面向元认知:脑电分析的主体意识对比深度融合表征学习。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS Biological Cybernetics Pub Date : 2023-10-01 Epub Date: 2023-07-04 DOI:10.1007/s00422-023-00967-8
Michael Briden, Narges Norouzi
{"title":"面向元认知:脑电分析的主体意识对比深度融合表征学习。","authors":"Michael Briden,&nbsp;Narges Norouzi","doi":"10.1007/s00422-023-00967-8","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a subject-aware contrastive learning deep fusion neural network framework for effectively classifying subjects' confidence levels in the perception of visual stimuli. The framework, called WaveFusion, is composed of lightweight convolutional neural networks for per-lead time-frequency analysis and an attention network for integrating the lightweight modalities for final prediction. To facilitate the training of WaveFusion, we incorporate a subject-aware contrastive learning approach by taking advantage of the heterogeneity within a multi-subject electroencephalogram dataset to boost representation learning and classification accuracy. The WaveFusion framework demonstrates high accuracy in classifying confidence levels by achieving a classification accuracy of 95.7% while also identifying influential brain regions.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600301/pdf/","citationCount":"1","resultStr":"{\"title\":\"Toward metacognition: subject-aware contrastive deep fusion representation learning for EEG analysis.\",\"authors\":\"Michael Briden,&nbsp;Narges Norouzi\",\"doi\":\"10.1007/s00422-023-00967-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a subject-aware contrastive learning deep fusion neural network framework for effectively classifying subjects' confidence levels in the perception of visual stimuli. The framework, called WaveFusion, is composed of lightweight convolutional neural networks for per-lead time-frequency analysis and an attention network for integrating the lightweight modalities for final prediction. To facilitate the training of WaveFusion, we incorporate a subject-aware contrastive learning approach by taking advantage of the heterogeneity within a multi-subject electroencephalogram dataset to boost representation learning and classification accuracy. The WaveFusion framework demonstrates high accuracy in classifying confidence levels by achieving a classification accuracy of 95.7% while also identifying influential brain regions.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600301/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-023-00967-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-023-00967-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个受试者感知对比学习深度融合神经网络框架,用于有效地分类受试者对视觉刺激感知的信心水平。该框架名为WaveFusion,由用于每导联时频分析的轻量级卷积神经网络和用于集成轻量级模态以进行最终预测的注意力网络组成。为了促进WaveFusion的训练,我们利用多主题脑电图数据集中的异质性,结合了一种主题感知的对比学习方法,以提高表征学习和分类准确性。WaveFusion框架通过实现95.7%的分类准确率,同时识别有影响的大脑区域,证明了在分类置信度方面的高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward metacognition: subject-aware contrastive deep fusion representation learning for EEG analysis.

We propose a subject-aware contrastive learning deep fusion neural network framework for effectively classifying subjects' confidence levels in the perception of visual stimuli. The framework, called WaveFusion, is composed of lightweight convolutional neural networks for per-lead time-frequency analysis and an attention network for integrating the lightweight modalities for final prediction. To facilitate the training of WaveFusion, we incorporate a subject-aware contrastive learning approach by taking advantage of the heterogeneity within a multi-subject electroencephalogram dataset to boost representation learning and classification accuracy. The WaveFusion framework demonstrates high accuracy in classifying confidence levels by achieving a classification accuracy of 95.7% while also identifying influential brain regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
期刊最新文献
Phase response curves and the role of coordinates. Neuroscientific insights about computer vision models: a concise review. Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse Can a Hebbian-like learning rule be avoiding the curse of dimensionality in sparse distributed data? Variational analysis of sensory feedback mechanisms in powerstroke-recovery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1