从 IMPPAT 数据库中的植物化学物质硅学鉴定潜在的蛋白激酶 C alpha 抑制剂以用于抗癌治疗:一种虚拟筛选方法。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-11-01 Epub Date: 2023-08-29 DOI:10.1080/07391102.2023.2252086
Saad Ali Alshehri, Shadma Wahab, Mohammad Ali Abdullah Almoyad
{"title":"从 IMPPAT 数据库中的植物化学物质硅学鉴定潜在的蛋白激酶 C alpha 抑制剂以用于抗癌治疗:一种虚拟筛选方法。","authors":"Saad Ali Alshehri, Shadma Wahab, Mohammad Ali Abdullah Almoyad","doi":"10.1080/07391102.2023.2252086","DOIUrl":null,"url":null,"abstract":"<p><p>Protein Kinase C alpha (PKCα) is a critical signaling molecule that plays a crucial role in various physiological processes, including cell growth, differentiation, and survival. Over the years, there has been a growing interest in targeting PKCα as a promising drug target for the treatment of various diseases, including cancer. Targeting PKCα can, therefore, serve as a potential strategy to prevent cancer progression and enhance the efficacy of conventional anticancer therapies. We conducted a systematic search for promising compounds for their anticancer potential that target PKCα using natural compounds from the IMPPAT database. The initial compounds were screened through various tests, including analysis of their physical and chemical properties, PAINS filter, ADMET analysis, PASS analysis, and specific interaction analysis. We selected those that showed high binding affinity and specificity to PKCα from the screened compounds, and we further analyzed them using molecular dynamics simulations (MDS) and principal component analysis (PCA). Various systematic parameters from the MDS analyses suggested that the protein-ligand complexes were stabilized throughout the simulation trajectories of 100 nanoseconds (ns). Our findings indicated that compounds Nicandrenone and Withaphysalin D bind to PKCα with high stability and affinity, making them potential candidates for further research in cancer therapeutics innovation in clinical contexts.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9463-9474"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In silico</i> identification of potential protein kinase C alpha inhibitors from phytochemicals from IMPPAT database for anticancer therapeutics: a virtual screening approach.\",\"authors\":\"Saad Ali Alshehri, Shadma Wahab, Mohammad Ali Abdullah Almoyad\",\"doi\":\"10.1080/07391102.2023.2252086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein Kinase C alpha (PKCα) is a critical signaling molecule that plays a crucial role in various physiological processes, including cell growth, differentiation, and survival. Over the years, there has been a growing interest in targeting PKCα as a promising drug target for the treatment of various diseases, including cancer. Targeting PKCα can, therefore, serve as a potential strategy to prevent cancer progression and enhance the efficacy of conventional anticancer therapies. We conducted a systematic search for promising compounds for their anticancer potential that target PKCα using natural compounds from the IMPPAT database. The initial compounds were screened through various tests, including analysis of their physical and chemical properties, PAINS filter, ADMET analysis, PASS analysis, and specific interaction analysis. We selected those that showed high binding affinity and specificity to PKCα from the screened compounds, and we further analyzed them using molecular dynamics simulations (MDS) and principal component analysis (PCA). Various systematic parameters from the MDS analyses suggested that the protein-ligand complexes were stabilized throughout the simulation trajectories of 100 nanoseconds (ns). Our findings indicated that compounds Nicandrenone and Withaphysalin D bind to PKCα with high stability and affinity, making them potential candidates for further research in cancer therapeutics innovation in clinical contexts.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"9463-9474\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2252086\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252086","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白激酶 C α(PKCα)是一种重要的信号分子,在细胞生长、分化和存活等各种生理过程中发挥着关键作用。多年来,人们对以 PKCα 为靶点治疗包括癌症在内的各种疾病的兴趣与日俱增。因此,以 PKCα 为靶点可以作为一种潜在的策略来预防癌症进展并提高传统抗癌疗法的疗效。我们利用 IMPPAT 数据库中的天然化合物,对具有抗癌潜力的 PKCα 靶向化合物进行了系统搜索。我们通过各种测试,包括理化性质分析、PAINS 筛选、ADMET 分析、PASS 分析和特异性相互作用分析,对最初的化合物进行了筛选。我们从筛选出的化合物中选出了与 PKCα 结合亲和力和特异性较高的化合物,并利用分子动力学模拟(MDS)和主成分分析(PCA)对其进行了进一步分析。分子动力学模拟分析得出的各种系统参数表明,在 100 纳秒(ns)的模拟轨迹中,蛋白质配体复合物一直保持稳定。我们的研究结果表明,尼坎地龙和 Withaphysalin D 化合物与 PKCα 的结合具有很高的稳定性和亲和力,使它们成为进一步研究癌症治疗创新临床应用的潜在候选化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico identification of potential protein kinase C alpha inhibitors from phytochemicals from IMPPAT database for anticancer therapeutics: a virtual screening approach.

Protein Kinase C alpha (PKCα) is a critical signaling molecule that plays a crucial role in various physiological processes, including cell growth, differentiation, and survival. Over the years, there has been a growing interest in targeting PKCα as a promising drug target for the treatment of various diseases, including cancer. Targeting PKCα can, therefore, serve as a potential strategy to prevent cancer progression and enhance the efficacy of conventional anticancer therapies. We conducted a systematic search for promising compounds for their anticancer potential that target PKCα using natural compounds from the IMPPAT database. The initial compounds were screened through various tests, including analysis of their physical and chemical properties, PAINS filter, ADMET analysis, PASS analysis, and specific interaction analysis. We selected those that showed high binding affinity and specificity to PKCα from the screened compounds, and we further analyzed them using molecular dynamics simulations (MDS) and principal component analysis (PCA). Various systematic parameters from the MDS analyses suggested that the protein-ligand complexes were stabilized throughout the simulation trajectories of 100 nanoseconds (ns). Our findings indicated that compounds Nicandrenone and Withaphysalin D bind to PKCα with high stability and affinity, making them potential candidates for further research in cancer therapeutics innovation in clinical contexts.Communicated by Ramaswamy H. Sarma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
Investigating the interaction pattern of FDA approved compounds with Mycobacterium tuberculosis GidB to understand their potential as antibiotics. In silico mutagenesis on active site residues of Acinetobacter haemolyticus lipase KV1 for improved binding to polyethylene terephthalate (PET). From nature's pharmacy: harnessing bioactive phytoconstituents as fibroblast growth factor receptor 3 inhibitors for anti-cancer therapeutics. Immunoinformatic approach to design T cell epitope-based chimeric vaccine targeting multiple serotypes of dengue virus. A combination of conserved and stage-specific lncRNA biomarkers to detect lung adenocarcinoma progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1