有无 Latrunculin-B 作用下细胞膜斜率波动的热动态和非热动态比较。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2023-05-05 DOI:10.1088/1478-3975/accef1
Srestha Roy, Rahul Vaippully, Muruga Lokesh, Gokul Nalupurackal, Vandana Yadav, Snigdhadev Chakraborty, Manoj Gopalakrishnan, Privita Edwina Rayappan George Edwin, Saumendra Kumar Bajpai, Basudev Roy
{"title":"有无 Latrunculin-B 作用下细胞膜斜率波动的热动态和非热动态比较。","authors":"Srestha Roy, Rahul Vaippully, Muruga Lokesh, Gokul Nalupurackal, Vandana Yadav, Snigdhadev Chakraborty, Manoj Gopalakrishnan, Privita Edwina Rayappan George Edwin, Saumendra Kumar Bajpai, Basudev Roy","doi":"10.1088/1478-3975/accef1","DOIUrl":null,"url":null,"abstract":"<p><p>Conventionally, only the normal cell membrane fluctuations have been studied and used to ascertain membrane properties like the bending rigidity. A new concept, the membrane local slope fluctuations was introduced recently (Vaippully<i>et al</i>2020<i>Soft Matter</i><b>16</b>7606), which can be modelled as a gradient of the normal fluctuations. It has been found that the power spectral density (PSD) of slope fluctuations behave as (frequency)<sup>-1</sup>while the normal fluctuations yields (frequency)-5/3even on the apical cell membrane in the high frequency region. In this manuscript, we explore a different situation where the cell is applied with the drug Latrunculin-B which inhibits actin polymerization and find the effect on membrane fluctuations. We find that even as the normal fluctuations show a power law (frequency)-5/3as is the case for a free membrane, the slope fluctuations PSD remains (frequency)<sup>-1</sup>, with exactly the same coefficient as the case when the drug was not applied. Moreover, while sometimes, when the normal fluctuations at high frequency yield a power law of (frequency)-4/3, the pitch PSD still yields (frequency)<sup>-1</sup>. Thus, this presents a convenient opportunity to study membrane parameters like bending rigidity as a function of time after application of the drug, while the membrane softens. We also investigate the active athermal fluctuations of the membrane appearing in the PSD at low frequencies and find active timescales of slower than 1 s.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of thermal and athermal dynamics of the cell membrane slope fluctuations in the presence and absence of Latrunculin-B.\",\"authors\":\"Srestha Roy, Rahul Vaippully, Muruga Lokesh, Gokul Nalupurackal, Vandana Yadav, Snigdhadev Chakraborty, Manoj Gopalakrishnan, Privita Edwina Rayappan George Edwin, Saumendra Kumar Bajpai, Basudev Roy\",\"doi\":\"10.1088/1478-3975/accef1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventionally, only the normal cell membrane fluctuations have been studied and used to ascertain membrane properties like the bending rigidity. A new concept, the membrane local slope fluctuations was introduced recently (Vaippully<i>et al</i>2020<i>Soft Matter</i><b>16</b>7606), which can be modelled as a gradient of the normal fluctuations. It has been found that the power spectral density (PSD) of slope fluctuations behave as (frequency)<sup>-1</sup>while the normal fluctuations yields (frequency)-5/3even on the apical cell membrane in the high frequency region. In this manuscript, we explore a different situation where the cell is applied with the drug Latrunculin-B which inhibits actin polymerization and find the effect on membrane fluctuations. We find that even as the normal fluctuations show a power law (frequency)-5/3as is the case for a free membrane, the slope fluctuations PSD remains (frequency)<sup>-1</sup>, with exactly the same coefficient as the case when the drug was not applied. Moreover, while sometimes, when the normal fluctuations at high frequency yield a power law of (frequency)-4/3, the pitch PSD still yields (frequency)<sup>-1</sup>. Thus, this presents a convenient opportunity to study membrane parameters like bending rigidity as a function of time after application of the drug, while the membrane softens. We also investigate the active athermal fluctuations of the membrane appearing in the PSD at low frequencies and find active timescales of slower than 1 s.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/accef1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/accef1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,人们只研究正常细胞膜的波动,并用它来确定膜的特性,如弯曲刚度。最近提出了一个新概念,即膜局部斜率波动(Vaippullyet al2020Soft Matter167606),它可以被模拟为正常波动的梯度。研究发现,斜率波动的功率谱密度(PSD)表现为(频率)-1,而法线波动即使在高频率区域的顶端细胞膜上也会产生(频率)-5/3。在本手稿中,我们探讨了一种不同的情况,即在细胞中加入抑制肌动蛋白聚合的药物 Latrunculin-B,并发现其对膜波动的影响。我们发现,即使正常波动与自由膜一样呈现幂律(频率)-5/3,斜率波动 PSD 仍为(频率)-1,其系数与未使用药物时完全相同。此外,有时当高频率的正常波动产生(频率)-4/3 的幂律时,斜率波动 PSD 仍为(频率)-1。因此,这为研究膜参数(如弯曲刚度)提供了一个方便的机会,它是施药后膜软化过程中时间的函数。我们还研究了出现在低频 PSD 中的膜活动热波动,发现活动时间尺度慢于 1 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of thermal and athermal dynamics of the cell membrane slope fluctuations in the presence and absence of Latrunculin-B.

Conventionally, only the normal cell membrane fluctuations have been studied and used to ascertain membrane properties like the bending rigidity. A new concept, the membrane local slope fluctuations was introduced recently (Vaippullyet al2020Soft Matter167606), which can be modelled as a gradient of the normal fluctuations. It has been found that the power spectral density (PSD) of slope fluctuations behave as (frequency)-1while the normal fluctuations yields (frequency)-5/3even on the apical cell membrane in the high frequency region. In this manuscript, we explore a different situation where the cell is applied with the drug Latrunculin-B which inhibits actin polymerization and find the effect on membrane fluctuations. We find that even as the normal fluctuations show a power law (frequency)-5/3as is the case for a free membrane, the slope fluctuations PSD remains (frequency)-1, with exactly the same coefficient as the case when the drug was not applied. Moreover, while sometimes, when the normal fluctuations at high frequency yield a power law of (frequency)-4/3, the pitch PSD still yields (frequency)-1. Thus, this presents a convenient opportunity to study membrane parameters like bending rigidity as a function of time after application of the drug, while the membrane softens. We also investigate the active athermal fluctuations of the membrane appearing in the PSD at low frequencies and find active timescales of slower than 1 s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1