{"title":"由 HGF 和 TGF-Β 介导的细胞间相互作用促进肝癌细胞的三维球形和异种移植生长","authors":"Zheng Peng, Xiaolan Lv, Pengfei Zhang, Qiao Chen, Hongyu Zhang, Jianlin Chen, Xingxuan Ma, Bohui Ouyang, Meng Hao, Haibo Tong, Dongwei Guo, Yi Luo, Shigao Huang","doi":"10.2174/1389203724666230825100318","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, the importance of the interactions between liver cancer cells and fibroblasts has been increasingly recognized; however, many details remain to be explored.</p><p><strong>Methods: </strong>In this work, we first studied their intercellular interactions using conditioned medium from mouse embryonic fibroblasts (MEFs), then through a previously established coculture model.</p><p><strong>Results: </strong>Culturing in a conditioned medium from MEFs could significantly increase the growth, migration, and invasion of liver cancer cells. The coculture model further demonstrated that a positive feedback loop was formed between transforming growth factor-β (TGF-β) from HepG2 cells and mHGF (mouse hepatocyte growth factor) from MEFs during coculture. In this feedback loop, c-Met expression in HepG2 cells was significantly increased, and its downstream signaling pathways, such as Src/FAK, PI3K/AKT, and RAF/MEK/ERK, were activated. Moreover, the proportion of activated MEFs was also increased. More importantly, the growth-promoting effects caused by the interaction of these two cell types were validated <i>in vitro</i> by a 3D spheroid growth assay and <i>in vivo</i> by a xenograft mouse model.</p><p><strong>Conclusion: </strong>Collectively, these findings provide valuable insights into the interactions between fibroblasts and liver cancer cells, which may have therapeutic implications for the treatment of liver cancer.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"71-82"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercellular Interactions Mediated by HGF And TGF-Β Promote the 3D Spherical and Xenograft Growth of Liver Cancer Cells.\",\"authors\":\"Zheng Peng, Xiaolan Lv, Pengfei Zhang, Qiao Chen, Hongyu Zhang, Jianlin Chen, Xingxuan Ma, Bohui Ouyang, Meng Hao, Haibo Tong, Dongwei Guo, Yi Luo, Shigao Huang\",\"doi\":\"10.2174/1389203724666230825100318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recently, the importance of the interactions between liver cancer cells and fibroblasts has been increasingly recognized; however, many details remain to be explored.</p><p><strong>Methods: </strong>In this work, we first studied their intercellular interactions using conditioned medium from mouse embryonic fibroblasts (MEFs), then through a previously established coculture model.</p><p><strong>Results: </strong>Culturing in a conditioned medium from MEFs could significantly increase the growth, migration, and invasion of liver cancer cells. The coculture model further demonstrated that a positive feedback loop was formed between transforming growth factor-β (TGF-β) from HepG2 cells and mHGF (mouse hepatocyte growth factor) from MEFs during coculture. In this feedback loop, c-Met expression in HepG2 cells was significantly increased, and its downstream signaling pathways, such as Src/FAK, PI3K/AKT, and RAF/MEK/ERK, were activated. Moreover, the proportion of activated MEFs was also increased. More importantly, the growth-promoting effects caused by the interaction of these two cell types were validated <i>in vitro</i> by a 3D spheroid growth assay and <i>in vivo</i> by a xenograft mouse model.</p><p><strong>Conclusion: </strong>Collectively, these findings provide valuable insights into the interactions between fibroblasts and liver cancer cells, which may have therapeutic implications for the treatment of liver cancer.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"71-82\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389203724666230825100318\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230825100318","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intercellular Interactions Mediated by HGF And TGF-Β Promote the 3D Spherical and Xenograft Growth of Liver Cancer Cells.
Background: Recently, the importance of the interactions between liver cancer cells and fibroblasts has been increasingly recognized; however, many details remain to be explored.
Methods: In this work, we first studied their intercellular interactions using conditioned medium from mouse embryonic fibroblasts (MEFs), then through a previously established coculture model.
Results: Culturing in a conditioned medium from MEFs could significantly increase the growth, migration, and invasion of liver cancer cells. The coculture model further demonstrated that a positive feedback loop was formed between transforming growth factor-β (TGF-β) from HepG2 cells and mHGF (mouse hepatocyte growth factor) from MEFs during coculture. In this feedback loop, c-Met expression in HepG2 cells was significantly increased, and its downstream signaling pathways, such as Src/FAK, PI3K/AKT, and RAF/MEK/ERK, were activated. Moreover, the proportion of activated MEFs was also increased. More importantly, the growth-promoting effects caused by the interaction of these two cell types were validated in vitro by a 3D spheroid growth assay and in vivo by a xenograft mouse model.
Conclusion: Collectively, these findings provide valuable insights into the interactions between fibroblasts and liver cancer cells, which may have therapeutic implications for the treatment of liver cancer.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.