{"title":"羊水两感觉丘脑核局部回路神经元的进化。","authors":"Michael B Pritz","doi":"10.1159/000530316","DOIUrl":null,"url":null,"abstract":"<p><p>Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"98 4","pages":"183-193"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Local Circuit Neurons in Two Sensory Thalamic Nuclei in Amniotes.\",\"authors\":\"Michael B Pritz\",\"doi\":\"10.1159/000530316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"98 4\",\"pages\":\"183-193\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000530316\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000530316","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Evolution of Local Circuit Neurons in Two Sensory Thalamic Nuclei in Amniotes.
Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.