{"title":"从干血斑中提高基因组 DNA 提取率和简化提取方法的启示","authors":"Kiara Lee, Anubhav Tripathi","doi":"10.1089/bio.2022.0181","DOIUrl":null,"url":null,"abstract":"<p><p>There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into Increased Recovery and Simplification of Genomic DNA Extraction Methods from Dried Blood Spots.\",\"authors\":\"Kiara Lee, Anubhav Tripathi\",\"doi\":\"10.1089/bio.2022.0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2022.0181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2022.0181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Insight into Increased Recovery and Simplification of Genomic DNA Extraction Methods from Dried Blood Spots.
There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.