从干血斑中提高基因组 DNA 提取率和简化提取方法的启示

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-01 Epub Date: 2023-07-07 DOI:10.1089/bio.2022.0181
Kiara Lee, Anubhav Tripathi
{"title":"从干血斑中提高基因组 DNA 提取率和简化提取方法的启示","authors":"Kiara Lee, Anubhav Tripathi","doi":"10.1089/bio.2022.0181","DOIUrl":null,"url":null,"abstract":"<p><p>There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into Increased Recovery and Simplification of Genomic DNA Extraction Methods from Dried Blood Spots.\",\"authors\":\"Kiara Lee, Anubhav Tripathi\",\"doi\":\"10.1089/bio.2022.0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2022.0181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2022.0181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

关于如何从干血斑(DBS)中手工提取核酸,目前还没有达成共识。目前的方法通常是在加热或不加热的情况下将 DBSs 在溶液中搅拌不同的时间,然后用纯化方案纯化洗脱出来的核酸。我们探讨了基因组 DNA(gDNA)DBS 提取的几个特点,如提取效率、红细胞(RBC)在提取中的作用和关键动力学因素,以了解是否可以在保持足够的 gDNA 回收率的同时简化这些方案。我们发现,在进行 DBS gDNA 提取前,在红细胞裂解缓冲液中搅拌可使提取率提高 1.5 到 5 倍,具体取决于所使用的抗凝剂。使用碱性裂解剂、加热或搅拌足以在 5 分钟内洗脱出可扩增的定量聚合酶链反应(qPCR)gDNA。这项研究有助于深入了解从 DBSs 中提取 gDNA 的方法,从而为制定简单、标准化的人工提取方案提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insight into Increased Recovery and Simplification of Genomic DNA Extraction Methods from Dried Blood Spots.

There is no consensus on how to perform the manual extraction of nucleic acids from dried blood spots (DBSs). Current methods typically involve agitation of the DBSs in a solution for varying amounts of time with or without heat, and then purification of the eluted nucleic acids with a purification protocol. We explored several characteristics of genomic DNA (gDNA) DBS extraction such as extraction efficiency, the role of red blood cells (RBCs) in extraction and critical kinetic factors to understand if these protocols can be simplified while maintaining sufficient gDNA recovery. We found that agitation in a RBC lysis buffer before performing a DBS gDNA extraction protocol increases yield 1.5 to 5-fold, depending upon the anticoagulant used. The use of an alkaline lysing agent along with either heat or agitation was sufficient to elute quantitative polymerase chain reaction (qPCR) amplifiable gDNA in 5 minutes. This work adds insight into the extraction of gDNA from DBSs with the intention of informing a simple, standardized manual protocol for extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1