Carly A Bobak, Yifan Zhao, Joshua J Levy, A James O'Malley
{"title":"GRANDPA:使用度和属性增强的基因相关网络采样,应用于部分保密医疗网络的分析。","authors":"Carly A Bobak, Yifan Zhao, Joshua J Levy, A James O'Malley","doi":"10.1007/s41109-023-00548-5","DOIUrl":null,"url":null,"abstract":"<p><p>Protecting medical privacy can create obstacles in the analysis and distribution of healthcare graphs and statistical inferences accompanying them. We pose a graph simulation model which generates networks using degree and property augmentation and provide a flexible R package that allows users to create graphs that preserve vertex attribute relationships and approximating the retention of topological properties observed in the original graph (e.g., community structure). We illustrate our proposed algorithm using a case study based on Zachary's karate network and a patient-sharing graph generated from Medicare claims data in 2019. In both cases, we find that community structure is preserved, and normalized root mean square error between cumulative distributions of the degrees across the generated and the original graphs is low (0.0508 and 0.0514 respectively).</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173245/pdf/","citationCount":"0","resultStr":"{\"title\":\"GRANDPA: GeneRAtive network sampling using degree and property augmentation applied to the analysis of partially confidential healthcare networks.\",\"authors\":\"Carly A Bobak, Yifan Zhao, Joshua J Levy, A James O'Malley\",\"doi\":\"10.1007/s41109-023-00548-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protecting medical privacy can create obstacles in the analysis and distribution of healthcare graphs and statistical inferences accompanying them. We pose a graph simulation model which generates networks using degree and property augmentation and provide a flexible R package that allows users to create graphs that preserve vertex attribute relationships and approximating the retention of topological properties observed in the original graph (e.g., community structure). We illustrate our proposed algorithm using a case study based on Zachary's karate network and a patient-sharing graph generated from Medicare claims data in 2019. In both cases, we find that community structure is preserved, and normalized root mean square error between cumulative distributions of the degrees across the generated and the original graphs is low (0.0508 and 0.0514 respectively).</p>\",\"PeriodicalId\":37010,\"journal\":{\"name\":\"Applied Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41109-023-00548-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-023-00548-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
保护医疗隐私会给医疗图表的分析和发布以及随之而来的统计推断造成障碍。我们提出了一个图仿真模型,该模型利用度和属性增强生成网络,并提供了一个灵活的 R 软件包,允许用户创建保留顶点属性关系的图,并近似保留原始图中观察到的拓扑属性(如群落结构)。我们使用基于 Zachary 空手道网络的案例研究和根据 2019 年医疗保险报销数据生成的患者共享图来说明我们提出的算法。在这两种情况下,我们都发现群落结构得到了保留,生成图和原始图的度数累积分布之间的归一化均方根误差很低(分别为 0.0508 和 0.0514)。
GRANDPA: GeneRAtive network sampling using degree and property augmentation applied to the analysis of partially confidential healthcare networks.
Protecting medical privacy can create obstacles in the analysis and distribution of healthcare graphs and statistical inferences accompanying them. We pose a graph simulation model which generates networks using degree and property augmentation and provide a flexible R package that allows users to create graphs that preserve vertex attribute relationships and approximating the retention of topological properties observed in the original graph (e.g., community structure). We illustrate our proposed algorithm using a case study based on Zachary's karate network and a patient-sharing graph generated from Medicare claims data in 2019. In both cases, we find that community structure is preserved, and normalized root mean square error between cumulative distributions of the degrees across the generated and the original graphs is low (0.0508 and 0.0514 respectively).