{"title":"脊椎动物Palial细胞类型的保护和多样化:进化-进化的观点。","authors":"Shreyas M Suryanarayana, Dhananjay Huilgol","doi":"10.1159/000531718","DOIUrl":null,"url":null,"abstract":"<p><p>As the highest center of sensory processing, initiation, and modulation of behavior, the pallium has seen prominent changes during the course of vertebrate evolution, culminating in the emergence of the mammalian isocortex. The processes underlying this remarkable evolution have been a matter of debate for several centuries. Recent studies using modern techniques in a host of vertebrate species are beginning to reveal mechanistic principles underlying pallial evolution from the developmental, connectome, transcriptome and cell type levels. We attempt here to trace and reconstruct the evolution of pallium from an evo-devo perspective, focusing on two phylogenetic extremes in vertebrates - cyclostomes and mammals, while considering data from intercalated species. We conclude that two fundamental processes of evolutionary change - conservation and diversification of cell types, driven by functional demands, are the primary forces dictating the emergence of the diversity of pallial structures and imbibing them with the ability to mediate and control the exceptional variety of motor behaviors across vertebrates.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"98 4","pages":"210-228"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation and Diversification of Pallial Cell Types across Vertebrates: An Evo-Devo Perspective.\",\"authors\":\"Shreyas M Suryanarayana, Dhananjay Huilgol\",\"doi\":\"10.1159/000531718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the highest center of sensory processing, initiation, and modulation of behavior, the pallium has seen prominent changes during the course of vertebrate evolution, culminating in the emergence of the mammalian isocortex. The processes underlying this remarkable evolution have been a matter of debate for several centuries. Recent studies using modern techniques in a host of vertebrate species are beginning to reveal mechanistic principles underlying pallial evolution from the developmental, connectome, transcriptome and cell type levels. We attempt here to trace and reconstruct the evolution of pallium from an evo-devo perspective, focusing on two phylogenetic extremes in vertebrates - cyclostomes and mammals, while considering data from intercalated species. We conclude that two fundamental processes of evolutionary change - conservation and diversification of cell types, driven by functional demands, are the primary forces dictating the emergence of the diversity of pallial structures and imbibing them with the ability to mediate and control the exceptional variety of motor behaviors across vertebrates.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"98 4\",\"pages\":\"210-228\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000531718\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000531718","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Conservation and Diversification of Pallial Cell Types across Vertebrates: An Evo-Devo Perspective.
As the highest center of sensory processing, initiation, and modulation of behavior, the pallium has seen prominent changes during the course of vertebrate evolution, culminating in the emergence of the mammalian isocortex. The processes underlying this remarkable evolution have been a matter of debate for several centuries. Recent studies using modern techniques in a host of vertebrate species are beginning to reveal mechanistic principles underlying pallial evolution from the developmental, connectome, transcriptome and cell type levels. We attempt here to trace and reconstruct the evolution of pallium from an evo-devo perspective, focusing on two phylogenetic extremes in vertebrates - cyclostomes and mammals, while considering data from intercalated species. We conclude that two fundamental processes of evolutionary change - conservation and diversification of cell types, driven by functional demands, are the primary forces dictating the emergence of the diversity of pallial structures and imbibing them with the ability to mediate and control the exceptional variety of motor behaviors across vertebrates.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.