Holly E. Poore, Alexander Hatoum, Travis T. Mallard, Sandra Sanchez-Roige, Irwin D. Waldman, Abraham A. Palmer, K. Paige Harden, Peter B. Barr, Danielle M. Dick
{"title":"了解外化表型和物质使用障碍之间基因重叠的多变量方法。","authors":"Holly E. Poore, Alexander Hatoum, Travis T. Mallard, Sandra Sanchez-Roige, Irwin D. Waldman, Abraham A. Palmer, K. Paige Harden, Peter B. Barr, Danielle M. Dick","doi":"10.1111/adb.13319","DOIUrl":null,"url":null,"abstract":"<p>Substance use disorders (SUDs) are phenotypically and genetically correlated with each other and with other psychological traits characterized by behavioural under-control, termed externalizing phenotypes. In this study, we used genomic structural equation modelling to explore the shared genetic architecture among six externalizing phenotypes and four SUDs used in two previous multivariate genome-wide association studies of an externalizing and an addiction risk factor, respectively. We first evaluated five confirmatory factor analytic models, including a common factor model, alternative parameterizations of two-factor structures and a bifactor model. We next explored the genetic correlations between factors identified in these models and other relevant psychological traits. Finally, we quantified the degree of polygenic overlap between externalizing and addiction risk using MiXeR. We found that the common and two-factor structures provided the best fit to the data, evidenced by high factor loadings, good factor reliability and no evidence of concerning model characteristics. The two-factor models yielded high genetic correlations between factors (<i>r</i><sub>g</sub>s ≥ 0.87), and between the effect sizes of genetic correlations with external traits (<i>r</i><sub>g</sub> ≥ 0.95). Nevertheless, 21 of the 84 correlations with external criteria showed small, significant differences between externalizing and addiction risk factors. MiXer results showed that approximately 81% of influential externalizing variants were shared with addiction risk, whereas addiction risk shared 56% of its influential variants with externalizing. These results suggest that externalizing and addiction genetic risk are largely shared, though both constructs also retain meaningful unshared genetic variance. These results can inform future efforts to identify specific genetic influences on externalizing and SUDs.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"28 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/adb.13319","citationCount":"1","resultStr":"{\"title\":\"A multivariate approach to understanding the genetic overlap between externalizing phenotypes and substance use disorders\",\"authors\":\"Holly E. Poore, Alexander Hatoum, Travis T. Mallard, Sandra Sanchez-Roige, Irwin D. Waldman, Abraham A. Palmer, K. Paige Harden, Peter B. Barr, Danielle M. Dick\",\"doi\":\"10.1111/adb.13319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Substance use disorders (SUDs) are phenotypically and genetically correlated with each other and with other psychological traits characterized by behavioural under-control, termed externalizing phenotypes. In this study, we used genomic structural equation modelling to explore the shared genetic architecture among six externalizing phenotypes and four SUDs used in two previous multivariate genome-wide association studies of an externalizing and an addiction risk factor, respectively. We first evaluated five confirmatory factor analytic models, including a common factor model, alternative parameterizations of two-factor structures and a bifactor model. We next explored the genetic correlations between factors identified in these models and other relevant psychological traits. Finally, we quantified the degree of polygenic overlap between externalizing and addiction risk using MiXeR. We found that the common and two-factor structures provided the best fit to the data, evidenced by high factor loadings, good factor reliability and no evidence of concerning model characteristics. The two-factor models yielded high genetic correlations between factors (<i>r</i><sub>g</sub>s ≥ 0.87), and between the effect sizes of genetic correlations with external traits (<i>r</i><sub>g</sub> ≥ 0.95). Nevertheless, 21 of the 84 correlations with external criteria showed small, significant differences between externalizing and addiction risk factors. MiXer results showed that approximately 81% of influential externalizing variants were shared with addiction risk, whereas addiction risk shared 56% of its influential variants with externalizing. These results suggest that externalizing and addiction genetic risk are largely shared, though both constructs also retain meaningful unshared genetic variance. These results can inform future efforts to identify specific genetic influences on externalizing and SUDs.</p>\",\"PeriodicalId\":7289,\"journal\":{\"name\":\"Addiction Biology\",\"volume\":\"28 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/adb.13319\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Addiction Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/adb.13319\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.13319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A multivariate approach to understanding the genetic overlap between externalizing phenotypes and substance use disorders
Substance use disorders (SUDs) are phenotypically and genetically correlated with each other and with other psychological traits characterized by behavioural under-control, termed externalizing phenotypes. In this study, we used genomic structural equation modelling to explore the shared genetic architecture among six externalizing phenotypes and four SUDs used in two previous multivariate genome-wide association studies of an externalizing and an addiction risk factor, respectively. We first evaluated five confirmatory factor analytic models, including a common factor model, alternative parameterizations of two-factor structures and a bifactor model. We next explored the genetic correlations between factors identified in these models and other relevant psychological traits. Finally, we quantified the degree of polygenic overlap between externalizing and addiction risk using MiXeR. We found that the common and two-factor structures provided the best fit to the data, evidenced by high factor loadings, good factor reliability and no evidence of concerning model characteristics. The two-factor models yielded high genetic correlations between factors (rgs ≥ 0.87), and between the effect sizes of genetic correlations with external traits (rg ≥ 0.95). Nevertheless, 21 of the 84 correlations with external criteria showed small, significant differences between externalizing and addiction risk factors. MiXer results showed that approximately 81% of influential externalizing variants were shared with addiction risk, whereas addiction risk shared 56% of its influential variants with externalizing. These results suggest that externalizing and addiction genetic risk are largely shared, though both constructs also retain meaningful unshared genetic variance. These results can inform future efforts to identify specific genetic influences on externalizing and SUDs.
期刊介绍:
Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields.
Addiction Biology includes peer-reviewed original research reports and reviews.
Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.