以植物成分为强效先导的前列腺癌双靶向疗法:新型药物发现的计算方法。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-10-01 Epub Date: 2023-08-30 DOI:10.1080/07391102.2023.2251059
Sachin A Dhawale, Pallavi Bhosle, Sadhana Mahajan, Geetanjali Patil, Sachin Gawale, Mangesh Ghodke, Ganesh Tapadiya, Azim Ansari
{"title":"以植物成分为强效先导的前列腺癌双靶向疗法:新型药物发现的计算方法。","authors":"Sachin A Dhawale, Pallavi Bhosle, Sadhana Mahajan, Geetanjali Patil, Sachin Gawale, Mangesh Ghodke, Ganesh Tapadiya, Azim Ansari","doi":"10.1080/07391102.2023.2251059","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate Cancer (PCa) is an abnormal cell growth within the prostate. This condition is the second most widespread malignancy in elderly males and one of the most frequently diagnosed life-threatening conditions. The Androgen receptor signaling pathway played a crucial role in the initiation and spread to increase the risk of PCa. Hence, targeting the AR receptor signaling pathway is a key strategy for a therapeutic plan for PCa. Our study focuses on recognizing potential inhibitors for dual targeting in PCa by using the <i>in-silico</i> approach. In this study, we target the two enzymes that are CYP17A1 (3RUK) and 5α-reductase (3G1R) responsible for PCa, with the help of phytoconstituents. The natural plant contains various phytochemical types produced from secondary metabolites and used as a medical treatment. The <i>in-silico</i> investigation of phytoconstituents and enzymes was done by approaching molecular docking, ADMET analysis, and high-level molecular dynamic simulation used to assess the stability and binding affinities of the protein-ligand complex. Some phytoconstituents, such as Peonidin, Pelargonidin, Malvidin and Berberine show complex has good molecular interaction with protein. The reliability of the docking scores was examined using a molecular dynamic simulation, which revealed that the complex remained stable throughout the simulation, which ranged from 0 to 200 ns. The selected hits may be effective against CYP17A1 (3RUK) and 5α-reductase (3G1R) (PCa) using a computer-aided drug design (CADD) method, which further enables researchers for upcoming in-vivo and in-vitro research, according to our <i>in-silico</i> approach.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual targeting in prostate cancer with phytoconstituents as a potent lead: a computational approach for novel drug discovery.\",\"authors\":\"Sachin A Dhawale, Pallavi Bhosle, Sadhana Mahajan, Geetanjali Patil, Sachin Gawale, Mangesh Ghodke, Ganesh Tapadiya, Azim Ansari\",\"doi\":\"10.1080/07391102.2023.2251059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate Cancer (PCa) is an abnormal cell growth within the prostate. This condition is the second most widespread malignancy in elderly males and one of the most frequently diagnosed life-threatening conditions. The Androgen receptor signaling pathway played a crucial role in the initiation and spread to increase the risk of PCa. Hence, targeting the AR receptor signaling pathway is a key strategy for a therapeutic plan for PCa. Our study focuses on recognizing potential inhibitors for dual targeting in PCa by using the <i>in-silico</i> approach. In this study, we target the two enzymes that are CYP17A1 (3RUK) and 5α-reductase (3G1R) responsible for PCa, with the help of phytoconstituents. The natural plant contains various phytochemical types produced from secondary metabolites and used as a medical treatment. The <i>in-silico</i> investigation of phytoconstituents and enzymes was done by approaching molecular docking, ADMET analysis, and high-level molecular dynamic simulation used to assess the stability and binding affinities of the protein-ligand complex. Some phytoconstituents, such as Peonidin, Pelargonidin, Malvidin and Berberine show complex has good molecular interaction with protein. The reliability of the docking scores was examined using a molecular dynamic simulation, which revealed that the complex remained stable throughout the simulation, which ranged from 0 to 200 ns. The selected hits may be effective against CYP17A1 (3RUK) and 5α-reductase (3G1R) (PCa) using a computer-aided drug design (CADD) method, which further enables researchers for upcoming in-vivo and in-vitro research, according to our <i>in-silico</i> approach.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2251059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2251059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌(PCa)是前列腺内的异常细胞增生。这种疾病是老年男性中第二大最常见的恶性肿瘤,也是最常见的威胁生命的疾病之一。雄激素受体信号通路在 PCa 的发生和扩散过程中起着至关重要的作用,从而增加了 PCa 的患病风险。因此,靶向 AR 受体信号通路是治疗 PCa 的关键策略。我们的研究重点是通过采用硅内方法识别潜在的抑制剂,以实现 PCa 的双靶向治疗。在这项研究中,我们借助植物成分,针对导致 PCa 的两种酶,即 CYP17A1(3RUK)和 5α-还原酶(3G1R)。天然植物中含有从次级代谢产物中产生的各种植物化学物质,并被用作医疗手段。通过分子对接、ADMET 分析和高级分子动力学模拟,对植物成分和酶进行了分子内研究,以评估蛋白质配体复合物的稳定性和结合亲和力。一些植物成分,如芍药苷、天竺葵苷、锦葵苷和小檗碱,显示出与蛋白质有良好的分子相互作用。利用分子动力学模拟检验了对接得分的可靠性,结果表明,在 0 至 200 ns 的整个模拟过程中,复合物保持稳定。利用计算机辅助药物设计(CADD)方法,所选的药物可能对 CYP17A1(3RUK)和 5α-还原酶(3G1R)(PCa)有效,这进一步帮助研究人员根据我们的微观方法开展体内和体外研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual targeting in prostate cancer with phytoconstituents as a potent lead: a computational approach for novel drug discovery.

Prostate Cancer (PCa) is an abnormal cell growth within the prostate. This condition is the second most widespread malignancy in elderly males and one of the most frequently diagnosed life-threatening conditions. The Androgen receptor signaling pathway played a crucial role in the initiation and spread to increase the risk of PCa. Hence, targeting the AR receptor signaling pathway is a key strategy for a therapeutic plan for PCa. Our study focuses on recognizing potential inhibitors for dual targeting in PCa by using the in-silico approach. In this study, we target the two enzymes that are CYP17A1 (3RUK) and 5α-reductase (3G1R) responsible for PCa, with the help of phytoconstituents. The natural plant contains various phytochemical types produced from secondary metabolites and used as a medical treatment. The in-silico investigation of phytoconstituents and enzymes was done by approaching molecular docking, ADMET analysis, and high-level molecular dynamic simulation used to assess the stability and binding affinities of the protein-ligand complex. Some phytoconstituents, such as Peonidin, Pelargonidin, Malvidin and Berberine show complex has good molecular interaction with protein. The reliability of the docking scores was examined using a molecular dynamic simulation, which revealed that the complex remained stable throughout the simulation, which ranged from 0 to 200 ns. The selected hits may be effective against CYP17A1 (3RUK) and 5α-reductase (3G1R) (PCa) using a computer-aided drug design (CADD) method, which further enables researchers for upcoming in-vivo and in-vitro research, according to our in-silico approach.Communicated by Ramaswamy H. Sarma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing. Molecularly imprinted polymer-based sensors for identification volatile compounds in pharmaceutical products: in silico rational design. Computational insights into pediatric adenovirus inhibitors: in silico strategies for drug repurposing. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1