{"title":"通过n6 -甲基腺苷修饰调节miR-146b重塑肿瘤相关巨噬细胞并增强结直肠癌的抗pd -1治疗。","authors":"Shuying He, Wen Song, Shudan Cui, Jiating Li, Yonghong Jiang, Xueqing Chen, Liang Peng","doi":"10.1007/s13402-023-00839-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>MicroRNA-146b (miR-146b) alleviates experimental colitis in mice by mediating macrophage polarization and the release of inflammatory factors. Our goals were to evaluate the antitumor efficacy of miR-146b in colorectal cancer (CRC) and to investigate the underlying mechanisms.</p><p><strong>Methods: </strong>We used murine models of CRC to evaluate whether miR-146b influenced the progression of tumors independent of tumor-associated macrophages (TAMs). RNA immunoprecipitation, N6-methyladenosine (m<sup>6</sup>A) RNA immunoprecipitation and in vitro pri-miRNA processing assays were conducted to examine whether m<sup>6</sup>A mediates the maturation of pri-miR-146b/miR-146b. In a series of in vitro and in vivo experiments, we further defined the molecular mechanisms of methyltransferase-like 3 (METTL3)/miR-146b-mediated antitumor immunity and its efficacy in combination with anti-PD-1 immunotherapy.</p><p><strong>Results: </strong>We found that miR-146b deletion supported tumor progression by increasing the number of alternatively activated (M2) TAMs. Mechanistically, the m<sup>6</sup>A-related \"writer\" protein METTL3 and \"reader\" protein HNRNPA2B1 controlled miR-146b maturation by regulating the m<sup>6</sup>A modification region of pri-miR-146b. Furthermore, miR-146b deletion promoted the polarization of M2-TAMs by enhancing phosphoinositide 3-kinase (PI3K)/AKT signaling, and this effect was mediated by the class IA PI3K catalytic subunit p110β, which reduced T cell infiltration, aggravated immunosuppression and ultimately promoted tumor progression. METTL3 knockdown or miR-146b deletion induced programmed death ligand 1 (PD-L1) production via the p110β/PI3K/AKT pathway in TAMs and consequently augmented the antitumor activity of anti-PD-1 immunotherapy.</p><p><strong>Conclusions: </strong>The maturation of pri-miR-146b is m<sup>6</sup>A-dependent, and miR-146b deletion-mediated TAM differentiation promotes the development of CRC by activating the PI3K/AKT pathway, which induces upregulation of PD-L1 expression, inhibits T cell infiltration into the TME and enhances the antitumor activity of anti-PD-1 immunotherapy. The findings reveal that targeting miR-146b can serve as an adjuvant to anti-PD-1 immunotherapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1731-1746"},"PeriodicalIF":4.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697876/pdf/","citationCount":"2","resultStr":"{\"title\":\"Modulation of miR-146b by N6-methyladenosine modification remodels tumor-associated macrophages and enhances anti-PD-1 therapy in colorectal cancer.\",\"authors\":\"Shuying He, Wen Song, Shudan Cui, Jiating Li, Yonghong Jiang, Xueqing Chen, Liang Peng\",\"doi\":\"10.1007/s13402-023-00839-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>MicroRNA-146b (miR-146b) alleviates experimental colitis in mice by mediating macrophage polarization and the release of inflammatory factors. Our goals were to evaluate the antitumor efficacy of miR-146b in colorectal cancer (CRC) and to investigate the underlying mechanisms.</p><p><strong>Methods: </strong>We used murine models of CRC to evaluate whether miR-146b influenced the progression of tumors independent of tumor-associated macrophages (TAMs). RNA immunoprecipitation, N6-methyladenosine (m<sup>6</sup>A) RNA immunoprecipitation and in vitro pri-miRNA processing assays were conducted to examine whether m<sup>6</sup>A mediates the maturation of pri-miR-146b/miR-146b. In a series of in vitro and in vivo experiments, we further defined the molecular mechanisms of methyltransferase-like 3 (METTL3)/miR-146b-mediated antitumor immunity and its efficacy in combination with anti-PD-1 immunotherapy.</p><p><strong>Results: </strong>We found that miR-146b deletion supported tumor progression by increasing the number of alternatively activated (M2) TAMs. Mechanistically, the m<sup>6</sup>A-related \\\"writer\\\" protein METTL3 and \\\"reader\\\" protein HNRNPA2B1 controlled miR-146b maturation by regulating the m<sup>6</sup>A modification region of pri-miR-146b. Furthermore, miR-146b deletion promoted the polarization of M2-TAMs by enhancing phosphoinositide 3-kinase (PI3K)/AKT signaling, and this effect was mediated by the class IA PI3K catalytic subunit p110β, which reduced T cell infiltration, aggravated immunosuppression and ultimately promoted tumor progression. METTL3 knockdown or miR-146b deletion induced programmed death ligand 1 (PD-L1) production via the p110β/PI3K/AKT pathway in TAMs and consequently augmented the antitumor activity of anti-PD-1 immunotherapy.</p><p><strong>Conclusions: </strong>The maturation of pri-miR-146b is m<sup>6</sup>A-dependent, and miR-146b deletion-mediated TAM differentiation promotes the development of CRC by activating the PI3K/AKT pathway, which induces upregulation of PD-L1 expression, inhibits T cell infiltration into the TME and enhances the antitumor activity of anti-PD-1 immunotherapy. The findings reveal that targeting miR-146b can serve as an adjuvant to anti-PD-1 immunotherapy.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"1731-1746\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697876/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00839-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00839-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Modulation of miR-146b by N6-methyladenosine modification remodels tumor-associated macrophages and enhances anti-PD-1 therapy in colorectal cancer.
Purpose: MicroRNA-146b (miR-146b) alleviates experimental colitis in mice by mediating macrophage polarization and the release of inflammatory factors. Our goals were to evaluate the antitumor efficacy of miR-146b in colorectal cancer (CRC) and to investigate the underlying mechanisms.
Methods: We used murine models of CRC to evaluate whether miR-146b influenced the progression of tumors independent of tumor-associated macrophages (TAMs). RNA immunoprecipitation, N6-methyladenosine (m6A) RNA immunoprecipitation and in vitro pri-miRNA processing assays were conducted to examine whether m6A mediates the maturation of pri-miR-146b/miR-146b. In a series of in vitro and in vivo experiments, we further defined the molecular mechanisms of methyltransferase-like 3 (METTL3)/miR-146b-mediated antitumor immunity and its efficacy in combination with anti-PD-1 immunotherapy.
Results: We found that miR-146b deletion supported tumor progression by increasing the number of alternatively activated (M2) TAMs. Mechanistically, the m6A-related "writer" protein METTL3 and "reader" protein HNRNPA2B1 controlled miR-146b maturation by regulating the m6A modification region of pri-miR-146b. Furthermore, miR-146b deletion promoted the polarization of M2-TAMs by enhancing phosphoinositide 3-kinase (PI3K)/AKT signaling, and this effect was mediated by the class IA PI3K catalytic subunit p110β, which reduced T cell infiltration, aggravated immunosuppression and ultimately promoted tumor progression. METTL3 knockdown or miR-146b deletion induced programmed death ligand 1 (PD-L1) production via the p110β/PI3K/AKT pathway in TAMs and consequently augmented the antitumor activity of anti-PD-1 immunotherapy.
Conclusions: The maturation of pri-miR-146b is m6A-dependent, and miR-146b deletion-mediated TAM differentiation promotes the development of CRC by activating the PI3K/AKT pathway, which induces upregulation of PD-L1 expression, inhibits T cell infiltration into the TME and enhances the antitumor activity of anti-PD-1 immunotherapy. The findings reveal that targeting miR-146b can serve as an adjuvant to anti-PD-1 immunotherapy.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.