{"title":"人工智能能否辅助持续肾替代治疗?","authors":"Nada Hammouda , Javier A. Neyra","doi":"10.1053/j.ackd.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Continuous renal replacement therapy (CRRT) is widely utilized to support critically ill patients with </span>acute kidney injury. Artificial intelligence (AI) has the potential to enhance CRRT delivery, but evidence is limited. We reviewed existing literature on the utilization of AI in CRRT with the objective of identifying current gaps in evidence and research considerations. We conducted a scoping review focusing on the development or use of AI-based tools </span>in patients<span> receiving CRRT. Ten papers were identified; 6 of 10 (60%) published in 2021, and 6 of 10 (60%) focused on machine learning models to augment CRRT delivery. All innovations were in the design/early validation phase of development. Primary research interests focused on early indicators of CRRT need, prognostication of mortality and kidney recovery, and identification of risk factors for mortality. Secondary research priorities included dynamic CRRT monitoring, predicting CRRT-related complications, and automated data pooling for point-of-care analysis. Literature gaps included prospective validation and implementation, biases ascertainment, and evaluation of AI-generated </span></span>health care disparities. Research on AI applications to enhance CRRT delivery has grown exponentially in the last years, but the field remains premature. There is a need to evaluate how these applications could enhance bedside decision-making capacity and assist structure and processes of CRRT delivery.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Can Artificial Intelligence Assist in Delivering Continuous Renal Replacement Therapy?\",\"authors\":\"Nada Hammouda , Javier A. Neyra\",\"doi\":\"10.1053/j.ackd.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Continuous renal replacement therapy (CRRT) is widely utilized to support critically ill patients with </span>acute kidney injury. Artificial intelligence (AI) has the potential to enhance CRRT delivery, but evidence is limited. We reviewed existing literature on the utilization of AI in CRRT with the objective of identifying current gaps in evidence and research considerations. We conducted a scoping review focusing on the development or use of AI-based tools </span>in patients<span> receiving CRRT. Ten papers were identified; 6 of 10 (60%) published in 2021, and 6 of 10 (60%) focused on machine learning models to augment CRRT delivery. All innovations were in the design/early validation phase of development. Primary research interests focused on early indicators of CRRT need, prognostication of mortality and kidney recovery, and identification of risk factors for mortality. Secondary research priorities included dynamic CRRT monitoring, predicting CRRT-related complications, and automated data pooling for point-of-care analysis. Literature gaps included prospective validation and implementation, biases ascertainment, and evaluation of AI-generated </span></span>health care disparities. Research on AI applications to enhance CRRT delivery has grown exponentially in the last years, but the field remains premature. There is a need to evaluate how these applications could enhance bedside decision-making capacity and assist structure and processes of CRRT delivery.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1548559522001732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1548559522001732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Can Artificial Intelligence Assist in Delivering Continuous Renal Replacement Therapy?
Continuous renal replacement therapy (CRRT) is widely utilized to support critically ill patients with acute kidney injury. Artificial intelligence (AI) has the potential to enhance CRRT delivery, but evidence is limited. We reviewed existing literature on the utilization of AI in CRRT with the objective of identifying current gaps in evidence and research considerations. We conducted a scoping review focusing on the development or use of AI-based tools in patients receiving CRRT. Ten papers were identified; 6 of 10 (60%) published in 2021, and 6 of 10 (60%) focused on machine learning models to augment CRRT delivery. All innovations were in the design/early validation phase of development. Primary research interests focused on early indicators of CRRT need, prognostication of mortality and kidney recovery, and identification of risk factors for mortality. Secondary research priorities included dynamic CRRT monitoring, predicting CRRT-related complications, and automated data pooling for point-of-care analysis. Literature gaps included prospective validation and implementation, biases ascertainment, and evaluation of AI-generated health care disparities. Research on AI applications to enhance CRRT delivery has grown exponentially in the last years, but the field remains premature. There is a need to evaluate how these applications could enhance bedside decision-making capacity and assist structure and processes of CRRT delivery.