{"title":"从患者临床标本中回收的产esbl细菌的生物膜形成状况:系统回顾和荟萃分析。","authors":"Masoud Keikha, Mohsen Karbalaei","doi":"10.2174/1871526522666220920141631","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, the emergence and spread of extended-spectrum beta-lactamase (ESBL) bacteria have become a global health concern. In addition, the ability to form biofilm due to less impermeability to antibiotics and the horizontal transformation (conjugation) of genes involved in antibiotic resistance have exacerbated the concerns. With a comprehensive meta-analysis, this study evaluated the potential relationship between ESBL and biofilm formation.</p><p><strong>Methods: </strong>A literature search was performed using global databases, such as PubMed and Scopus, up to November 2021. We retrieved all relevant documents and selected eligible articles based on inclusion criteria. Finally, the potential association between the biofilm formation capacity and resistance of ESBL-producing bacteria was measured with an odds ratio and a 95% confidence interval.</p><p><strong>Results: </strong>In the present study, 17 articles, including 2,069 Gram-negative isolates, were considered as eligible. The prevalence of biofilm formation in all clinical isolates of ESBL and non-ESBL pathogens was 72.4% (95% CI: 60.7-81.6) and 40.5% (95% CI: 30.2-51.8), respectively. Our results showed a positive relationship between the ability for biofilm formation and conferring antibiotic resistance in ESBL-producing bacteria (OR: 3.35; 95% CI: 1.67-6.74; p-value: 0.001).</p><p><strong>Conclusion: </strong>In general, we showed the rate of biofilm formation to be significantly higher in ESBLproducing strains. Given the current results, the updated therapeutic guidelines should consider the role of biofilm production for optimal therapy, treatment course, and clinical outcomes rather than the recommendation of antimicrobial agents by focusing on the results of the antibiotic susceptibility test.</p>","PeriodicalId":13678,"journal":{"name":"Infectious disorders drug targets","volume":"23 2","pages":"e200922208987"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilm Formation Status in ESBL-Producing Bacteria Recovered from Clinical Specimens of Patients: A Systematic Review and Meta-Analysis.\",\"authors\":\"Masoud Keikha, Mohsen Karbalaei\",\"doi\":\"10.2174/1871526522666220920141631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recently, the emergence and spread of extended-spectrum beta-lactamase (ESBL) bacteria have become a global health concern. In addition, the ability to form biofilm due to less impermeability to antibiotics and the horizontal transformation (conjugation) of genes involved in antibiotic resistance have exacerbated the concerns. With a comprehensive meta-analysis, this study evaluated the potential relationship between ESBL and biofilm formation.</p><p><strong>Methods: </strong>A literature search was performed using global databases, such as PubMed and Scopus, up to November 2021. We retrieved all relevant documents and selected eligible articles based on inclusion criteria. Finally, the potential association between the biofilm formation capacity and resistance of ESBL-producing bacteria was measured with an odds ratio and a 95% confidence interval.</p><p><strong>Results: </strong>In the present study, 17 articles, including 2,069 Gram-negative isolates, were considered as eligible. The prevalence of biofilm formation in all clinical isolates of ESBL and non-ESBL pathogens was 72.4% (95% CI: 60.7-81.6) and 40.5% (95% CI: 30.2-51.8), respectively. Our results showed a positive relationship between the ability for biofilm formation and conferring antibiotic resistance in ESBL-producing bacteria (OR: 3.35; 95% CI: 1.67-6.74; p-value: 0.001).</p><p><strong>Conclusion: </strong>In general, we showed the rate of biofilm formation to be significantly higher in ESBLproducing strains. Given the current results, the updated therapeutic guidelines should consider the role of biofilm production for optimal therapy, treatment course, and clinical outcomes rather than the recommendation of antimicrobial agents by focusing on the results of the antibiotic susceptibility test.</p>\",\"PeriodicalId\":13678,\"journal\":{\"name\":\"Infectious disorders drug targets\",\"volume\":\"23 2\",\"pages\":\"e200922208987\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious disorders drug targets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1871526522666220920141631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871526522666220920141631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Biofilm Formation Status in ESBL-Producing Bacteria Recovered from Clinical Specimens of Patients: A Systematic Review and Meta-Analysis.
Background: Recently, the emergence and spread of extended-spectrum beta-lactamase (ESBL) bacteria have become a global health concern. In addition, the ability to form biofilm due to less impermeability to antibiotics and the horizontal transformation (conjugation) of genes involved in antibiotic resistance have exacerbated the concerns. With a comprehensive meta-analysis, this study evaluated the potential relationship between ESBL and biofilm formation.
Methods: A literature search was performed using global databases, such as PubMed and Scopus, up to November 2021. We retrieved all relevant documents and selected eligible articles based on inclusion criteria. Finally, the potential association between the biofilm formation capacity and resistance of ESBL-producing bacteria was measured with an odds ratio and a 95% confidence interval.
Results: In the present study, 17 articles, including 2,069 Gram-negative isolates, were considered as eligible. The prevalence of biofilm formation in all clinical isolates of ESBL and non-ESBL pathogens was 72.4% (95% CI: 60.7-81.6) and 40.5% (95% CI: 30.2-51.8), respectively. Our results showed a positive relationship between the ability for biofilm formation and conferring antibiotic resistance in ESBL-producing bacteria (OR: 3.35; 95% CI: 1.67-6.74; p-value: 0.001).
Conclusion: In general, we showed the rate of biofilm formation to be significantly higher in ESBLproducing strains. Given the current results, the updated therapeutic guidelines should consider the role of biofilm production for optimal therapy, treatment course, and clinical outcomes rather than the recommendation of antimicrobial agents by focusing on the results of the antibiotic susceptibility test.
期刊介绍:
Infectious Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in infectious disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in infectious disorders. As the discovery, identification, characterization and validation of novel human drug targets for anti-infective drug discovery continues to grow, this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.