{"title":"一种分离和冷冻保存人脂肪干细胞的新方法","authors":"Young-Cheol Lim, Jung-Il Jung, In-Kee Hong","doi":"10.1089/cell.2023.0017","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cells (ADSCs) are isolated from abundant adipose tissue and have the capacity to differentiate into multiple cell lineages. ADSCs have raised big interest in therapeutic applications in regenerative medicine and demonstrated to fulfill the criteria for a successful cell therapy. There are several methods for isolation of ADSCs from adipose tissue and cryopreservation of ADSCs. Here, novel methods for the isolation and cryopreservation of ADSCs are presented and focused. Microscopic pieces of adipose tissue were placed on transwell inserts, and the ADSCs were induced to migrate to the lower wells for 1 week. We compared the properties of our ADSCs with those isolated by enzymatic digestion and enzyme-free method of culture plate, and our ADSCs were found to be more stable and healthier. In addition, we proposed a novel cryoprotectant solution (FNCP) containing pectin and L-alanine, which was compared with standard cryoprotectant solution. Overall, our methods proved more useful for ADSCs isolation than other methods and did not require consideration of \"minimal manipulation\" by the U.S. Food and Drug Administration (FDA). Furthermore, our FNCP did not contain dimethyl sulfoxide and fetal bovine serum, therefore stable storage is possible in xeno-free and animal-free cryopreservation solutions.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Human Adipose-Derived Stem Cell Isolation and Cryopreservation.\",\"authors\":\"Young-Cheol Lim, Jung-Il Jung, In-Kee Hong\",\"doi\":\"10.1089/cell.2023.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose-derived stem cells (ADSCs) are isolated from abundant adipose tissue and have the capacity to differentiate into multiple cell lineages. ADSCs have raised big interest in therapeutic applications in regenerative medicine and demonstrated to fulfill the criteria for a successful cell therapy. There are several methods for isolation of ADSCs from adipose tissue and cryopreservation of ADSCs. Here, novel methods for the isolation and cryopreservation of ADSCs are presented and focused. Microscopic pieces of adipose tissue were placed on transwell inserts, and the ADSCs were induced to migrate to the lower wells for 1 week. We compared the properties of our ADSCs with those isolated by enzymatic digestion and enzyme-free method of culture plate, and our ADSCs were found to be more stable and healthier. In addition, we proposed a novel cryoprotectant solution (FNCP) containing pectin and L-alanine, which was compared with standard cryoprotectant solution. Overall, our methods proved more useful for ADSCs isolation than other methods and did not require consideration of \\\"minimal manipulation\\\" by the U.S. Food and Drug Administration (FDA). Furthermore, our FNCP did not contain dimethyl sulfoxide and fetal bovine serum, therefore stable storage is possible in xeno-free and animal-free cryopreservation solutions.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2023.0017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2023.0017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A Novel Method for Human Adipose-Derived Stem Cell Isolation and Cryopreservation.
Adipose-derived stem cells (ADSCs) are isolated from abundant adipose tissue and have the capacity to differentiate into multiple cell lineages. ADSCs have raised big interest in therapeutic applications in regenerative medicine and demonstrated to fulfill the criteria for a successful cell therapy. There are several methods for isolation of ADSCs from adipose tissue and cryopreservation of ADSCs. Here, novel methods for the isolation and cryopreservation of ADSCs are presented and focused. Microscopic pieces of adipose tissue were placed on transwell inserts, and the ADSCs were induced to migrate to the lower wells for 1 week. We compared the properties of our ADSCs with those isolated by enzymatic digestion and enzyme-free method of culture plate, and our ADSCs were found to be more stable and healthier. In addition, we proposed a novel cryoprotectant solution (FNCP) containing pectin and L-alanine, which was compared with standard cryoprotectant solution. Overall, our methods proved more useful for ADSCs isolation than other methods and did not require consideration of "minimal manipulation" by the U.S. Food and Drug Administration (FDA). Furthermore, our FNCP did not contain dimethyl sulfoxide and fetal bovine serum, therefore stable storage is possible in xeno-free and animal-free cryopreservation solutions.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.