Opalinus粘土岩层中粘土相关微生物群落及其与核废料库的相关性。

IF 3.9 3区 生物学 Q2 MICROBIOLOGY MicrobiologyOpen Pub Date : 2023-07-10 DOI:10.1002/mbo3.1370
Julia Mitzscherling, Steffi Genderjahn, Anja M. Schleicher, Alexander Bartholomäus, Jens Kallmeyer, Dirk Wagner
{"title":"Opalinus粘土岩层中粘土相关微生物群落及其与核废料库的相关性。","authors":"Julia Mitzscherling,&nbsp;Steffi Genderjahn,&nbsp;Anja M. Schleicher,&nbsp;Alexander Bartholomäus,&nbsp;Jens Kallmeyer,&nbsp;Dirk Wagner","doi":"10.1002/mbo3.1370","DOIUrl":null,"url":null,"abstract":"<p>Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"12 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1370","citationCount":"0","resultStr":"{\"title\":\"Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation\",\"authors\":\"Julia Mitzscherling,&nbsp;Steffi Genderjahn,&nbsp;Anja M. Schleicher,&nbsp;Alexander Bartholomäus,&nbsp;Jens Kallmeyer,&nbsp;Dirk Wagner\",\"doi\":\"10.1002/mbo3.1370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.</p>\",\"PeriodicalId\":18573,\"journal\":{\"name\":\"MicrobiologyOpen\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1370\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MicrobiologyOpen\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1370\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1370","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,微生物是生物腐蚀和矿物转化的天然媒介,从而可能影响用于高水平核废料储存的深层地质储存库的安全。为了更好地了解深层陆地生物圈的常驻微生物群落如何影响绝缘粘土的矿物学和地球化学特征,我们分析了它们的结构和潜在代谢功能,以及瑞士蒙特里地下研究实验室的特定地点矿物学和元素组成。我们发现Opalinus Clay地层主要由α变形菌、厚壁菌门和拟杆菌门定植,它们以形成腐蚀性生物膜而闻名。与产甲烷古菌和硫酸盐还原菌相比,潜在的铁还原菌占主导地位。尽管Opalinus粘土中的微生物群落大多是同质的,但特定地点的矿物学和地球化学条件已经选择了表现出矿物溶解和转化代谢潜力的亚群落。我们的研究结果表明,必须进一步研究潜在的低活性矿物相关微生物群落的存在,以防止长期影响储存库的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation

Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
期刊最新文献
Monitoring the Persistence of Pseudomonas sivasensis Strain CF10PS3 in Cereal Fields The Effects of Carbonate on Candida albicans Filamentation, Biofilm Formation, and Antifungal Resistance Bacillus xiamenensis Inhibits the Growth of Moraxella osloensis by Producing Indole-3-Carboxaldehyde Evaluation of DNA Extraction Methods for Microbial Community Profiling in Deadwood Decomposition Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1