对癌症转移和免疫疗法反应进行灵敏、非免疫原性的体内成像。

IF 4.1 Q2 CELL BIOLOGY Cell Stress Pub Date : 2023-08-14 DOI:10.15698/cst2023.08.288
Joseph R Merrill, Alessandra Inguscio, Taemoon Chung, Breanna Demestichas, Libia A Garcia, Jill Habel, David Y Lewis, Tobias Janowitz, Scott K Lyons
{"title":"对癌症转移和免疫疗法反应进行灵敏、非免疫原性的体内成像。","authors":"Joseph R Merrill, Alessandra Inguscio, Taemoon Chung, Breanna Demestichas, Libia A Garcia, Jill Habel, David Y Lewis, Tobias Janowitz, Scott K Lyons","doi":"10.15698/cst2023.08.288","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive imaging of tumors expressing reporter transgenes is a popular preclinical method for studying tumor development and response to therapy <i>in vivo</i> due to its ability to distinguish signal from tumors over background noise. However, the utilized transgenes, such as firefly luciferase, are immunogenic and, therefore, impact results when expressed in immune-competent hosts. This represents an important limitation, given that cancer immunology and immunotherapy are currently among the most impactful areas of research and therapeutic development. Here we present a non-immunogenic preclinical tumor imaging approach. Based on the expression of murine sodium iodide symporter (mNIS), it facilitates sensitive, non-invasive detection of syngeneic tumor cells in immune-competent tumor models without additional immunogenicity arising from exogenous transgenic protein or selection marker expression. NIS-expressing tumor cells internalize the gamma-emitting [<sup>99m</sup>Tc]pertechnetate ion and so can be detected by SPECT (single photon emission computed tomography). Using a mouse model of pancreatic ductal adenocarcinoma hepatic metastases in immune-competent C57BL/6 mice, we demonstrate that the technique enables the detection of very early metastatic lesions and longitudinal assessment of immunotherapy responses using precise and quantifiable whole-body SPECT/CT imaging.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"7 8","pages":"59-68"},"PeriodicalIF":4.1000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468692/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sensitive, non-immunogenic <i>in vivo</i> imaging of cancer metastases and immunotherapy response.\",\"authors\":\"Joseph R Merrill, Alessandra Inguscio, Taemoon Chung, Breanna Demestichas, Libia A Garcia, Jill Habel, David Y Lewis, Tobias Janowitz, Scott K Lyons\",\"doi\":\"10.15698/cst2023.08.288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-invasive imaging of tumors expressing reporter transgenes is a popular preclinical method for studying tumor development and response to therapy <i>in vivo</i> due to its ability to distinguish signal from tumors over background noise. However, the utilized transgenes, such as firefly luciferase, are immunogenic and, therefore, impact results when expressed in immune-competent hosts. This represents an important limitation, given that cancer immunology and immunotherapy are currently among the most impactful areas of research and therapeutic development. Here we present a non-immunogenic preclinical tumor imaging approach. Based on the expression of murine sodium iodide symporter (mNIS), it facilitates sensitive, non-invasive detection of syngeneic tumor cells in immune-competent tumor models without additional immunogenicity arising from exogenous transgenic protein or selection marker expression. NIS-expressing tumor cells internalize the gamma-emitting [<sup>99m</sup>Tc]pertechnetate ion and so can be detected by SPECT (single photon emission computed tomography). Using a mouse model of pancreatic ductal adenocarcinoma hepatic metastases in immune-competent C57BL/6 mice, we demonstrate that the technique enables the detection of very early metastatic lesions and longitudinal assessment of immunotherapy responses using precise and quantifiable whole-body SPECT/CT imaging.</p>\",\"PeriodicalId\":36371,\"journal\":{\"name\":\"Cell Stress\",\"volume\":\"7 8\",\"pages\":\"59-68\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468692/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15698/cst2023.08.288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2023.08.288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对表达报告转基因的肿瘤进行非侵入性成像是一种常用的临床前方法,用于研究体内肿瘤的发展和对治疗的反应,因为这种方法能够将肿瘤信号与背景噪声区分开来。然而,所使用的转基因(如萤火虫荧光素酶)具有免疫原性,因此在免疫功能健全的宿主体内表达时会影响结果。鉴于癌症免疫学和免疫疗法是目前最具影响力的研究和治疗开发领域之一,这是一个重要的局限性。在这里,我们介绍一种非免疫原性的临床前肿瘤成像方法。这种方法以表达小鼠碘化钠合体(mNIS)为基础,有助于在免疫功能正常的肿瘤模型中灵敏、非侵入性地检测合成肿瘤细胞,而不会因外源转基因蛋白或选择标记物的表达而产生额外的免疫原性。表达 NIS 的肿瘤细胞会内化伽马射线发射的 [99mTc]pertechnetate 离子,因此可通过 SPECT(单光子发射计算机断层扫描)进行检测。我们利用免疫功能正常的 C57BL/6 小鼠胰腺导管腺癌肝转移模型,证明该技术能够检测早期转移病灶,并利用精确、可量化的全身 SPECT/CT 成像对免疫疗法反应进行纵向评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitive, non-immunogenic in vivo imaging of cancer metastases and immunotherapy response.

Non-invasive imaging of tumors expressing reporter transgenes is a popular preclinical method for studying tumor development and response to therapy in vivo due to its ability to distinguish signal from tumors over background noise. However, the utilized transgenes, such as firefly luciferase, are immunogenic and, therefore, impact results when expressed in immune-competent hosts. This represents an important limitation, given that cancer immunology and immunotherapy are currently among the most impactful areas of research and therapeutic development. Here we present a non-immunogenic preclinical tumor imaging approach. Based on the expression of murine sodium iodide symporter (mNIS), it facilitates sensitive, non-invasive detection of syngeneic tumor cells in immune-competent tumor models without additional immunogenicity arising from exogenous transgenic protein or selection marker expression. NIS-expressing tumor cells internalize the gamma-emitting [99mTc]pertechnetate ion and so can be detected by SPECT (single photon emission computed tomography). Using a mouse model of pancreatic ductal adenocarcinoma hepatic metastases in immune-competent C57BL/6 mice, we demonstrate that the technique enables the detection of very early metastatic lesions and longitudinal assessment of immunotherapy responses using precise and quantifiable whole-body SPECT/CT imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Stress
Cell Stress Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍: Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging. The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.
期刊最新文献
Dynamics of cell membrane lesions and adaptive conductance under the electrical stress. Saliva, a molecular reflection of the human body? Implications for diagnosis and treatment. CircRNA regulates the liquid-liquid phase separation of ATG4B, a novel strategy to inhibit cancer metastasis? Pathogenic hyperactivation of mTORC1 by cytoplasmic EP300 in Hutchinson-Gilford progeria syndrome. The missing hallmark of health: psychosocial adaptation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1