骨髓间充质干细胞外泌体 miR-345-3p 通过靶向 TRAF6 改善脑缺血再灌注损伤

IF 2 4区 医学 Q3 CLINICAL NEUROLOGY Current neurovascular research Pub Date : 2023-01-01 DOI:10.2174/1567202620666230905121102
Dan Hou, Lei Zhang, Yujie Hu, Guoshuai Yang, Dan Yu
{"title":"骨髓间充质干细胞外泌体 miR-345-3p 通过靶向 TRAF6 改善脑缺血再灌注损伤","authors":"Dan Hou, Lei Zhang, Yujie Hu, Guoshuai Yang, Dan Yu","doi":"10.2174/1567202620666230905121102","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The purpose of this study was to investigate the effects of bone marrow mesenchymal stem cells (BMSCs) exosomal miR-345-3p and tumor necrosis factor receptorassociated factor 6 (TRAF6) on cerebral ischemia reperfusion (CIR) injury. Exosomes (Exos) derived from BMSCs were isolated and identified. PC12 (rat pheochromocytoma) cells were used to establish an oxygen and glucose deprivation/reoxygenation (OGD/R) model.</p><p><strong>Methods: </strong>Cell counting kit-8, TUNEL staining, lactate dehydrogenase staining, RT-qPCR, and western blotting were utilized for analyzing the functions of miR-345-3p about PC12 cells. Dualluciferase reporter experiment was then to confirm the link between miR-345-3p and TRAF6. Finally, using male SD rats, the middle cerebral artery occlusion (MCAO) model was constructed. Regulation of I/R damage in MCAO rats of miR-345-3p and TRAF6 were further explored in the changes of modified neurological severity score, cerebral infarction pictures, relative infarct volume, and histopathological changes. After OGD/R treatment, neuronal apoptosis was dramatically increased. After treatment with exosomal miR-345-3p, OGD/R-induced neuroapoptosis was dramatically inhibited. Exosomal miR-345-3p inhibited OGD/R-induced neuroapoptosis by downregulating the expression of TRAF6. However, the miR-345-3p inhibitor aggravated the changes caused by OGD/R.</p><p><strong>Results: </strong>The corresponding regulations of miR-345-3p were reversed with TRAF6 overexpression. The animal experiments in vivo further verified that miR-345-3p ameliorated brain I/R injury in MCAO rats by targeting TRAF6.</p><p><strong>Conclusion: </strong>This study found that BMSCs-exosomal miR-345-3p protected against CIR injury by decreasing TRAF6.</p>","PeriodicalId":10879,"journal":{"name":"Current neurovascular research","volume":" ","pages":"493-504"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone Marrow Mesenchymal Stem Cell Exosomal miR-345-3p Ameliorates Cerebral Ischemia-reperfusion Injury by Targeting TRAF6.\",\"authors\":\"Dan Hou, Lei Zhang, Yujie Hu, Guoshuai Yang, Dan Yu\",\"doi\":\"10.2174/1567202620666230905121102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The purpose of this study was to investigate the effects of bone marrow mesenchymal stem cells (BMSCs) exosomal miR-345-3p and tumor necrosis factor receptorassociated factor 6 (TRAF6) on cerebral ischemia reperfusion (CIR) injury. Exosomes (Exos) derived from BMSCs were isolated and identified. PC12 (rat pheochromocytoma) cells were used to establish an oxygen and glucose deprivation/reoxygenation (OGD/R) model.</p><p><strong>Methods: </strong>Cell counting kit-8, TUNEL staining, lactate dehydrogenase staining, RT-qPCR, and western blotting were utilized for analyzing the functions of miR-345-3p about PC12 cells. Dualluciferase reporter experiment was then to confirm the link between miR-345-3p and TRAF6. Finally, using male SD rats, the middle cerebral artery occlusion (MCAO) model was constructed. Regulation of I/R damage in MCAO rats of miR-345-3p and TRAF6 were further explored in the changes of modified neurological severity score, cerebral infarction pictures, relative infarct volume, and histopathological changes. After OGD/R treatment, neuronal apoptosis was dramatically increased. After treatment with exosomal miR-345-3p, OGD/R-induced neuroapoptosis was dramatically inhibited. Exosomal miR-345-3p inhibited OGD/R-induced neuroapoptosis by downregulating the expression of TRAF6. However, the miR-345-3p inhibitor aggravated the changes caused by OGD/R.</p><p><strong>Results: </strong>The corresponding regulations of miR-345-3p were reversed with TRAF6 overexpression. The animal experiments in vivo further verified that miR-345-3p ameliorated brain I/R injury in MCAO rats by targeting TRAF6.</p><p><strong>Conclusion: </strong>This study found that BMSCs-exosomal miR-345-3p protected against CIR injury by decreasing TRAF6.</p>\",\"PeriodicalId\":10879,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\" \",\"pages\":\"493-504\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567202620666230905121102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567202620666230905121102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:本研究旨在探讨骨髓间充质干细胞(BMSCs)外泌体miR-345-3p和肿瘤坏死因子受体相关因子6(TRAF6)对脑缺血再灌注(CIR)损伤的影响。研究人员分离并鉴定了来源于BMSCs的外泌体(Exos)。用PC12(大鼠嗜铬细胞瘤)细胞建立氧和葡萄糖剥夺/再氧合(OGD/R)模型:方法:利用细胞计数试剂盒-8、TUNEL 染色、乳酸脱氢酶染色、RT-qPCR 和 Western 印迹分析 miR-345-3p 在 PC12 细胞中的功能。然后进行了荧光素酶报告实验,以证实 miR-345-3p 与 TRAF6 之间的联系。最后,利用雄性SD大鼠构建了大脑中动脉闭塞(MCAO)模型。通过改良神经系统严重程度评分、脑梗塞图片、相对梗塞体积和组织病理学变化,进一步探讨了miR-345-3p和TRAF6对MCAO大鼠I/R损伤的调控作用。OGD/R治疗后,神经细胞凋亡显著增加。使用外泌体miR-345-3p治疗后,OGD/R诱导的神经细胞凋亡被显著抑制。外泌体 miR-345-3p 通过下调 TRAF6 的表达抑制了 OGD/R 诱导的神经细胞凋亡。然而,miR-345-3p抑制剂加剧了OGD/R引起的变化:结果:过表达 TRAF6 会逆转 miR-345-3p 的相应调节。体内动物实验进一步验证了miR-345-3p通过靶向TRAF6改善了MCAO大鼠的脑I/R损伤:本研究发现,BMSCs-体外miR-345-3p通过减少TRAF6来保护CIR损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bone Marrow Mesenchymal Stem Cell Exosomal miR-345-3p Ameliorates Cerebral Ischemia-reperfusion Injury by Targeting TRAF6.

Introduction: The purpose of this study was to investigate the effects of bone marrow mesenchymal stem cells (BMSCs) exosomal miR-345-3p and tumor necrosis factor receptorassociated factor 6 (TRAF6) on cerebral ischemia reperfusion (CIR) injury. Exosomes (Exos) derived from BMSCs were isolated and identified. PC12 (rat pheochromocytoma) cells were used to establish an oxygen and glucose deprivation/reoxygenation (OGD/R) model.

Methods: Cell counting kit-8, TUNEL staining, lactate dehydrogenase staining, RT-qPCR, and western blotting were utilized for analyzing the functions of miR-345-3p about PC12 cells. Dualluciferase reporter experiment was then to confirm the link between miR-345-3p and TRAF6. Finally, using male SD rats, the middle cerebral artery occlusion (MCAO) model was constructed. Regulation of I/R damage in MCAO rats of miR-345-3p and TRAF6 were further explored in the changes of modified neurological severity score, cerebral infarction pictures, relative infarct volume, and histopathological changes. After OGD/R treatment, neuronal apoptosis was dramatically increased. After treatment with exosomal miR-345-3p, OGD/R-induced neuroapoptosis was dramatically inhibited. Exosomal miR-345-3p inhibited OGD/R-induced neuroapoptosis by downregulating the expression of TRAF6. However, the miR-345-3p inhibitor aggravated the changes caused by OGD/R.

Results: The corresponding regulations of miR-345-3p were reversed with TRAF6 overexpression. The animal experiments in vivo further verified that miR-345-3p ameliorated brain I/R injury in MCAO rats by targeting TRAF6.

Conclusion: This study found that BMSCs-exosomal miR-345-3p protected against CIR injury by decreasing TRAF6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current neurovascular research
Current neurovascular research 医学-临床神经学
CiteScore
3.80
自引率
9.50%
发文量
54
审稿时长
3 months
期刊介绍: Current Neurovascular Research provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum publishing novel and original work as well as timely neuroscience research articles, full-length/mini reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridges the gap between basic science research and clinical discovery. Current Neurovascular Research emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.
期刊最新文献
Nomogram to Predict 90-Day All-Cause Mortality in Acute Ischemic Stroke Patients after Endovascular Thrombectomy Extract of Gualou-Xiebai Herb Pair Improves Lipid Metabolism Disorders by Enhancing the Reverse Cholesterol Transport in Atherosclerosis Mice Electroacupuncture Inhibits Neural Ferroptosis in Rat Model of Traumatic Brain Injury via Activating System Xc−/GSH/GPX4 Axis Comparison of 4 mm-sized and 3 mm-sized Stent Retrievers in Mechanical Thrombectomy for M2 Occlusion Neuroimaging Marker-CT Perfusion of Early Neurological Deterioration in Patients with Minor Stroke and Large Vessel Occlusion after Intravenous Thrombolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1