{"title":"氨基氯化物可引起肾移植受者出现和不出现蛋白尿时的显著钠尿和体重减轻。","authors":"Gitte Rye Hinrichs, Jette Rude Nielsen, Henrik Birn, Claus Bistrup, Boye Lagerbon Jensen","doi":"10.1152/ajprenal.00108.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Albuminuria in kidney transplant recipients (KTRs) is associated with hypertension and aberrant glomerular filtration of serine proteases that may proteolytically activate the epithelial Na<sup>+</sup> channel (ENaC). The present nonrandomized, pharmacodynamic intervention study aimed to investigate if inhibition of ENaC increases Na<sup>+</sup> excretion and reduces extracellular volume in KTRs dependent on the presence of albuminuria. KTRs with and without albuminuria (albumin-to-creatinine ratio > 300 mg/g, <i>n</i> = 7, and <30 mg/g, <i>n</i> = 7, respectively) were included and ingested a diet with fixed Na<sup>+</sup> content (150 mmol/day) for 5 days. On the last day, amiloride at 10 mg was administered twice. Body weight, 24-h urine electrolyte excretion, body water content, and ambulatory blood pressure as well as plasma renin, angiotensin II, and aldosterone concentrations were determined before and after amiloride. Amiloride led to a significant decrease in body weight, increase in 24-h urinary Na<sup>+</sup> excretion, and decrease in 24-h urinary K<sup>+</sup> excretion in both groups. Urine output increased in the nonalbuminuric group only. There was no change in plasma renin, aldosterone, and angiotensin II concentrations after amiloride, whereas a significant decrease in nocturnal systolic blood pressure and increase in 24-h urine aldosterone excretion was observed in albuminuric KTRs only. There was a significant correlation between 24-h urinary albumin excretion and amiloride-induced 24-h urinary Na<sup>+</sup> excretion. In conclusion, ENaC activity contributes to Na<sup>+</sup> and water retention in KTRs with and without albuminuria. ENaC is a relevant pharmacological target in KTRs; however, larger and long-term studies are needed to evaluate whether the magnitude of this effect depends on the presence of albuminuria.<b>NEW & NOTEWORTHY</b> Amiloride has a significant natriuretic effect in kidney transplant recipients (KTRs) that relates to urinary albumin excretion. The epithelial Na<sup>+</sup> channel may be a relevant direct pharmacological target to counter Na<sup>+</sup> retention and hypertension in KTRs. Epithelial Na<sup>+</sup> channel blockers should be further investigated as a mean to mitigate Na<sup>+</sup> and water retention and to potentially obtain optimal blood pressure control in KTRs.</p>","PeriodicalId":7588,"journal":{"name":"American Journal of Physiology-renal Physiology","volume":"325 4","pages":"F426-F435"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amiloride evokes significant natriuresis and weight loss in kidney transplant recipients with and without albuminuria.\",\"authors\":\"Gitte Rye Hinrichs, Jette Rude Nielsen, Henrik Birn, Claus Bistrup, Boye Lagerbon Jensen\",\"doi\":\"10.1152/ajprenal.00108.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Albuminuria in kidney transplant recipients (KTRs) is associated with hypertension and aberrant glomerular filtration of serine proteases that may proteolytically activate the epithelial Na<sup>+</sup> channel (ENaC). The present nonrandomized, pharmacodynamic intervention study aimed to investigate if inhibition of ENaC increases Na<sup>+</sup> excretion and reduces extracellular volume in KTRs dependent on the presence of albuminuria. KTRs with and without albuminuria (albumin-to-creatinine ratio > 300 mg/g, <i>n</i> = 7, and <30 mg/g, <i>n</i> = 7, respectively) were included and ingested a diet with fixed Na<sup>+</sup> content (150 mmol/day) for 5 days. On the last day, amiloride at 10 mg was administered twice. Body weight, 24-h urine electrolyte excretion, body water content, and ambulatory blood pressure as well as plasma renin, angiotensin II, and aldosterone concentrations were determined before and after amiloride. Amiloride led to a significant decrease in body weight, increase in 24-h urinary Na<sup>+</sup> excretion, and decrease in 24-h urinary K<sup>+</sup> excretion in both groups. Urine output increased in the nonalbuminuric group only. There was no change in plasma renin, aldosterone, and angiotensin II concentrations after amiloride, whereas a significant decrease in nocturnal systolic blood pressure and increase in 24-h urine aldosterone excretion was observed in albuminuric KTRs only. There was a significant correlation between 24-h urinary albumin excretion and amiloride-induced 24-h urinary Na<sup>+</sup> excretion. In conclusion, ENaC activity contributes to Na<sup>+</sup> and water retention in KTRs with and without albuminuria. ENaC is a relevant pharmacological target in KTRs; however, larger and long-term studies are needed to evaluate whether the magnitude of this effect depends on the presence of albuminuria.<b>NEW & NOTEWORTHY</b> Amiloride has a significant natriuretic effect in kidney transplant recipients (KTRs) that relates to urinary albumin excretion. The epithelial Na<sup>+</sup> channel may be a relevant direct pharmacological target to counter Na<sup>+</sup> retention and hypertension in KTRs. Epithelial Na<sup>+</sup> channel blockers should be further investigated as a mean to mitigate Na<sup>+</sup> and water retention and to potentially obtain optimal blood pressure control in KTRs.</p>\",\"PeriodicalId\":7588,\"journal\":{\"name\":\"American Journal of Physiology-renal Physiology\",\"volume\":\"325 4\",\"pages\":\"F426-F435\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physiology-renal Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00108.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology-renal Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajprenal.00108.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Amiloride evokes significant natriuresis and weight loss in kidney transplant recipients with and without albuminuria.
Albuminuria in kidney transplant recipients (KTRs) is associated with hypertension and aberrant glomerular filtration of serine proteases that may proteolytically activate the epithelial Na+ channel (ENaC). The present nonrandomized, pharmacodynamic intervention study aimed to investigate if inhibition of ENaC increases Na+ excretion and reduces extracellular volume in KTRs dependent on the presence of albuminuria. KTRs with and without albuminuria (albumin-to-creatinine ratio > 300 mg/g, n = 7, and <30 mg/g, n = 7, respectively) were included and ingested a diet with fixed Na+ content (150 mmol/day) for 5 days. On the last day, amiloride at 10 mg was administered twice. Body weight, 24-h urine electrolyte excretion, body water content, and ambulatory blood pressure as well as plasma renin, angiotensin II, and aldosterone concentrations were determined before and after amiloride. Amiloride led to a significant decrease in body weight, increase in 24-h urinary Na+ excretion, and decrease in 24-h urinary K+ excretion in both groups. Urine output increased in the nonalbuminuric group only. There was no change in plasma renin, aldosterone, and angiotensin II concentrations after amiloride, whereas a significant decrease in nocturnal systolic blood pressure and increase in 24-h urine aldosterone excretion was observed in albuminuric KTRs only. There was a significant correlation between 24-h urinary albumin excretion and amiloride-induced 24-h urinary Na+ excretion. In conclusion, ENaC activity contributes to Na+ and water retention in KTRs with and without albuminuria. ENaC is a relevant pharmacological target in KTRs; however, larger and long-term studies are needed to evaluate whether the magnitude of this effect depends on the presence of albuminuria.NEW & NOTEWORTHY Amiloride has a significant natriuretic effect in kidney transplant recipients (KTRs) that relates to urinary albumin excretion. The epithelial Na+ channel may be a relevant direct pharmacological target to counter Na+ retention and hypertension in KTRs. Epithelial Na+ channel blockers should be further investigated as a mean to mitigate Na+ and water retention and to potentially obtain optimal blood pressure control in KTRs.
期刊介绍:
The American Journal of Physiology - Renal Physiology publishes original manuscripts on timely topics in both basic science and clinical research. Published articles address a broad range of subjects relating to the kidney and urinary tract, and may involve human or animal models, individual cell types, and isolated membrane systems. Also covered are the pathophysiological basis of renal disease processes, regulation of body fluids, and clinical research that provides mechanistic insights. Studies of renal function may be conducted using a wide range of approaches, such as biochemistry, immunology, genetics, mathematical modeling, molecular biology, as well as physiological and clinical methodologies.