泰地唑胺和利奈唑胺大鼠唾液浓度监测。

IF 1.9 4区 医学 Q3 PHARMACOLOGY & PHARMACY European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2023-07-01 DOI:10.1007/s13318-023-00836-6
Yuki Inoue, Yuki Sato, Hitoshi Kashiwagi, Shunsuke Nashimoto, Mitsuru Sugawara, Yoh Takekuma
{"title":"泰地唑胺和利奈唑胺大鼠唾液浓度监测。","authors":"Yuki Inoue,&nbsp;Yuki Sato,&nbsp;Hitoshi Kashiwagi,&nbsp;Shunsuke Nashimoto,&nbsp;Mitsuru Sugawara,&nbsp;Yoh Takekuma","doi":"10.1007/s13318-023-00836-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma.</p><p><strong>Methods: </strong>Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid.</p><p><strong>Results: </strong>A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (C<sub>max</sub>) was 0.99 ± 0.08 µg/mL in the saliva and 14.46 ± 1.71 µg/mL in the plasma. Meanwhile, the C<sub>max</sub> of linezolid was 8.01 ± 1.42 µg/mL in the saliva and 13.00 ± 1.90 µg/mL in the plasma. According to these results, the saliva/plasma concentration ratios of tedizolid and linezolid in rats were 0.0513 ± 0.0080 and 0.6341 ± 0.0339, respectively.</p><p><strong>Conclusions: </strong>Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Salivary Concentrations of Tedizolid and Linezolid Using Rats.\",\"authors\":\"Yuki Inoue,&nbsp;Yuki Sato,&nbsp;Hitoshi Kashiwagi,&nbsp;Shunsuke Nashimoto,&nbsp;Mitsuru Sugawara,&nbsp;Yoh Takekuma\",\"doi\":\"10.1007/s13318-023-00836-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma.</p><p><strong>Methods: </strong>Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid.</p><p><strong>Results: </strong>A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (C<sub>max</sub>) was 0.99 ± 0.08 µg/mL in the saliva and 14.46 ± 1.71 µg/mL in the plasma. Meanwhile, the C<sub>max</sub> of linezolid was 8.01 ± 1.42 µg/mL in the saliva and 13.00 ± 1.90 µg/mL in the plasma. According to these results, the saliva/plasma concentration ratios of tedizolid and linezolid in rats were 0.0513 ± 0.0080 and 0.6341 ± 0.0339, respectively.</p><p><strong>Conclusions: </strong>Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.</p>\",\"PeriodicalId\":11939,\"journal\":{\"name\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13318-023-00836-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-023-00836-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:治疗性药物监测(TDM)是管理使用利奈唑胺患者的有效工具。使用唾液治疗TDM比使用血浆有潜在的优势;然而,只有少数报告比较了唾液和血浆中的药物浓度。此外,尚未见类似利奈唑胺的恶唑烷类抗生素tedizolid唾液浓度的报道。本研究比较了大鼠下颌骨唾液中泰地唑胺和利奈唑胺的浓度与血浆中的浓度。方法:大鼠尾静脉给药Tedizolid (10 mg/kg, n = 6)和linezolid (12 mg/kg, n = 5)。在给药后8小时内采集下颌下唾液和血浆样本,检测泰地唑胺和利奈唑胺的浓度。结果:唾液和血浆中tedizolid浓度(r = 0.964, p max)分别为0.99±0.08µg/mL和14.46±1.71µg/mL。利奈唑胺在唾液中的Cmax为8.01±1.42µg/mL,在血浆中的Cmax为13.00±1.90µg/mL。结果显示,大鼠唾液浓度比为0.0513±0.0080,利奈唑胺浓度比为0.6341±0.0339。结论:考虑唾液与血浆中泰地唑胺和利奈唑胺浓度的相关性,以及唾液的特点,本研究结果提示唾液是TDM的有用基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring Salivary Concentrations of Tedizolid and Linezolid Using Rats.

Background and objective: Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma.

Methods: Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid.

Results: A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (Cmax) was 0.99 ± 0.08 µg/mL in the saliva and 14.46 ± 1.71 µg/mL in the plasma. Meanwhile, the Cmax of linezolid was 8.01 ± 1.42 µg/mL in the saliva and 13.00 ± 1.90 µg/mL in the plasma. According to these results, the saliva/plasma concentration ratios of tedizolid and linezolid in rats were 0.0513 ± 0.0080 and 0.6341 ± 0.0339, respectively.

Conclusions: Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
64
审稿时长
>12 weeks
期刊介绍: Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences. Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.
期刊最新文献
Pharmacokinetic Model of Drug Interaction of Tacrolimus with Combined Administration of CYP3A4 Inhibitors Voriconazole and Clarithromycin After Bone Marrow Transplantation. Pharmacokinetic and Pharmacodynamic Interaction of Finerenone with Diltiazem, Fluconazole, and Ritonavir in Rats. Prediction of First-in-Human Dose of Chimeric Antigen Receptor-T (CAR-T) Cells from Mice. Vancomycin in Pediatric Patients with Cystic Fibrosis: Dose Optimization Using Population Pharmacokinetic Approach Whole Body Physiologically Based Pharmacokinetic Model to Explain A Patient With Drug–Drug Interaction Between Voriconazole and Flucloxacillin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1