Dana Zeid , Andre B. Toussaint , Carmen C. Dressler , Samuel P. Schumacher , Chau Do , Heather Desalvo , Danait Selamawi , Angela R. Bongiovanni , Hannah L. Mayberry , Gregory V. Carr , Mathieu E. Wimmer
{"title":"大鼠的父亲吗啡暴露减少了青少年雄性后代的社交游戏,而不会影响青少年雄性或雌性后代的吸毒行为。","authors":"Dana Zeid , Andre B. Toussaint , Carmen C. Dressler , Samuel P. Schumacher , Chau Do , Heather Desalvo , Danait Selamawi , Angela R. Bongiovanni , Hannah L. Mayberry , Gregory V. Carr , Mathieu E. Wimmer","doi":"10.1016/j.mcn.2023.103877","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The ongoing opioid addiction<span> crisis necessitates the identification of novel risk factors to improve prevention and treatment of opioid use disorder. Parental opioid exposure has recently emerged as a potential regulator of offspring vulnerability to opioid misuse, in addition to heritable genetic liability. An understudied aspect of this “missing heritability” is the developmental presentation of these cross-generational phenotypes. This is an especially relevant question in the context of inherited addiction-related phenotypes, given the prominent role of developmental processes in the etiology of psychiatric disorders. Paternal morphine self-administration was previously shown to alter the sensitivity to the reinforcing and antinociceptive properties of opioids in the next generation. Here, phenotyping was expanded to include the adolescent period, with a focus on </span></span>endophenotypes related to opioid use disorders and pain. Paternal morphine exposure did not alter heroin or cocaine self-administration in male and female juvenile progeny. Further, baseline sensory reflexes related to pain were unaltered in morphine-sired adolescent rats of either sex. However, morphine-sired adolescent males exhibited a reduction in social play </span>behavior. Our findings suggest that, in morphine-sired male offspring, paternal opioid exposure does not affect opioid intake during adolescence, suggesting that this phenotype does not emerge until later in life. Altered social behaviors in male morphine-sired adolescents indicate that the changes in drug-taking behavior in adults sired by morphine-exposed sires may be due to more complex factors not yet fully assessed.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103877"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528482/pdf/","citationCount":"1","resultStr":"{\"title\":\"Paternal morphine exposure in rats reduces social play in adolescent male progeny without affecting drug-taking behavior in juvenile males or female offspring\",\"authors\":\"Dana Zeid , Andre B. Toussaint , Carmen C. Dressler , Samuel P. Schumacher , Chau Do , Heather Desalvo , Danait Selamawi , Angela R. Bongiovanni , Hannah L. Mayberry , Gregory V. Carr , Mathieu E. Wimmer\",\"doi\":\"10.1016/j.mcn.2023.103877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The ongoing opioid addiction<span> crisis necessitates the identification of novel risk factors to improve prevention and treatment of opioid use disorder. Parental opioid exposure has recently emerged as a potential regulator of offspring vulnerability to opioid misuse, in addition to heritable genetic liability. An understudied aspect of this “missing heritability” is the developmental presentation of these cross-generational phenotypes. This is an especially relevant question in the context of inherited addiction-related phenotypes, given the prominent role of developmental processes in the etiology of psychiatric disorders. Paternal morphine self-administration was previously shown to alter the sensitivity to the reinforcing and antinociceptive properties of opioids in the next generation. Here, phenotyping was expanded to include the adolescent period, with a focus on </span></span>endophenotypes related to opioid use disorders and pain. Paternal morphine exposure did not alter heroin or cocaine self-administration in male and female juvenile progeny. Further, baseline sensory reflexes related to pain were unaltered in morphine-sired adolescent rats of either sex. However, morphine-sired adolescent males exhibited a reduction in social play </span>behavior. Our findings suggest that, in morphine-sired male offspring, paternal opioid exposure does not affect opioid intake during adolescence, suggesting that this phenotype does not emerge until later in life. Altered social behaviors in male morphine-sired adolescents indicate that the changes in drug-taking behavior in adults sired by morphine-exposed sires may be due to more complex factors not yet fully assessed.</p></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"126 \",\"pages\":\"Article 103877\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528482/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743123000714\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743123000714","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Paternal morphine exposure in rats reduces social play in adolescent male progeny without affecting drug-taking behavior in juvenile males or female offspring
The ongoing opioid addiction crisis necessitates the identification of novel risk factors to improve prevention and treatment of opioid use disorder. Parental opioid exposure has recently emerged as a potential regulator of offspring vulnerability to opioid misuse, in addition to heritable genetic liability. An understudied aspect of this “missing heritability” is the developmental presentation of these cross-generational phenotypes. This is an especially relevant question in the context of inherited addiction-related phenotypes, given the prominent role of developmental processes in the etiology of psychiatric disorders. Paternal morphine self-administration was previously shown to alter the sensitivity to the reinforcing and antinociceptive properties of opioids in the next generation. Here, phenotyping was expanded to include the adolescent period, with a focus on endophenotypes related to opioid use disorders and pain. Paternal morphine exposure did not alter heroin or cocaine self-administration in male and female juvenile progeny. Further, baseline sensory reflexes related to pain were unaltered in morphine-sired adolescent rats of either sex. However, morphine-sired adolescent males exhibited a reduction in social play behavior. Our findings suggest that, in morphine-sired male offspring, paternal opioid exposure does not affect opioid intake during adolescence, suggesting that this phenotype does not emerge until later in life. Altered social behaviors in male morphine-sired adolescents indicate that the changes in drug-taking behavior in adults sired by morphine-exposed sires may be due to more complex factors not yet fully assessed.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.