{"title":"利用计算空间组学探索空间生物学的复杂性","authors":"Zhiyuan Yuan , Jianhua Yao","doi":"10.1016/j.semcancer.2023.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Spatially resolved transcriptomics (SRT) has unlocked new dimensions in our understanding of intricate tissue architectures. However, this rapidly expanding field produces a wealth of diverse and voluminous data, necessitating the evolution of sophisticated computational strategies to unravel inherent patterns. Two distinct methodologies, gene spatial pattern recognition (GSPR) and tissue spatial pattern recognition (TSPR), have emerged as vital tools in this process. GSPR methodologies are designed to identify and classify genes exhibiting noteworthy spatial patterns, while TSPR strategies aim to understand intercellular interactions and recognize tissue domains with molecular and spatial coherence. In this review, we provide a comprehensive exploration of SRT, highlighting crucial data modalities and resources that are instrumental for the development of methods and biological insights. We address the complexities and challenges posed by the use of heterogeneous data in developing GSPR and TSPR methodologies and propose an optimal workflow for both. We delve into the latest advancements in GSPR and TSPR, examining their interrelationships. Lastly, we peer into the future, envisaging the potential directions and perspectives in this dynamic field.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"95 ","pages":"Pages 25-41"},"PeriodicalIF":12.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harnessing computational spatial omics to explore the spatial biology intricacies\",\"authors\":\"Zhiyuan Yuan , Jianhua Yao\",\"doi\":\"10.1016/j.semcancer.2023.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatially resolved transcriptomics (SRT) has unlocked new dimensions in our understanding of intricate tissue architectures. However, this rapidly expanding field produces a wealth of diverse and voluminous data, necessitating the evolution of sophisticated computational strategies to unravel inherent patterns. Two distinct methodologies, gene spatial pattern recognition (GSPR) and tissue spatial pattern recognition (TSPR), have emerged as vital tools in this process. GSPR methodologies are designed to identify and classify genes exhibiting noteworthy spatial patterns, while TSPR strategies aim to understand intercellular interactions and recognize tissue domains with molecular and spatial coherence. In this review, we provide a comprehensive exploration of SRT, highlighting crucial data modalities and resources that are instrumental for the development of methods and biological insights. We address the complexities and challenges posed by the use of heterogeneous data in developing GSPR and TSPR methodologies and propose an optimal workflow for both. We delve into the latest advancements in GSPR and TSPR, examining their interrelationships. Lastly, we peer into the future, envisaging the potential directions and perspectives in this dynamic field.</p></div>\",\"PeriodicalId\":21594,\"journal\":{\"name\":\"Seminars in cancer biology\",\"volume\":\"95 \",\"pages\":\"Pages 25-41\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cancer biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044579X23000974\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23000974","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Harnessing computational spatial omics to explore the spatial biology intricacies
Spatially resolved transcriptomics (SRT) has unlocked new dimensions in our understanding of intricate tissue architectures. However, this rapidly expanding field produces a wealth of diverse and voluminous data, necessitating the evolution of sophisticated computational strategies to unravel inherent patterns. Two distinct methodologies, gene spatial pattern recognition (GSPR) and tissue spatial pattern recognition (TSPR), have emerged as vital tools in this process. GSPR methodologies are designed to identify and classify genes exhibiting noteworthy spatial patterns, while TSPR strategies aim to understand intercellular interactions and recognize tissue domains with molecular and spatial coherence. In this review, we provide a comprehensive exploration of SRT, highlighting crucial data modalities and resources that are instrumental for the development of methods and biological insights. We address the complexities and challenges posed by the use of heterogeneous data in developing GSPR and TSPR methodologies and propose an optimal workflow for both. We delve into the latest advancements in GSPR and TSPR, examining their interrelationships. Lastly, we peer into the future, envisaging the potential directions and perspectives in this dynamic field.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.