{"title":"新型取代三唑连接四氟萘杂化衍生物的合成、抗癌活性和分子模型研究。","authors":"Musa Erdoğan, Ferah Comert Onder","doi":"10.1080/07391102.2023.2252914","DOIUrl":null,"url":null,"abstract":"<p><p>To create some novel anticancer molecules, a library of novel series of various triazoles linked to the hydroxyl group of 5,6,7,8-tetrafluoronaphthalen-1-ol <b>(3)</b> was designed and synthesized <i>via</i> CuAAC reaction '<i>Click Chemistry'</i> of tetrafluoronaphthalene based terminal alkyne with substituted organic azides. The structural characterizations of the targeted Click products <b>9-18</b> were confirmed by FTIR, <sup>1</sup>H NMR, <sup>19</sup>F NMR, <sup>13</sup>C NMR and HRMS spectroscopy. Synthesized compounds were tested in two triple negative breast cancer (TNBC) cell lines to understand their anticancer potentials. According to our findings, compounds <b>14</b> and <b>13</b> showed high cytotoxicity in BT549 cells at 20 μM and 30 μM, respectively. Moreover, these compounds blocked the migration of BT549 cells. In the MDA-MB-231 cell line, compound <b>18</b> exhibited high cytotoxicity and can block cell migration for 24 h. Molecular docking study with synthesized novel compounds was performed by Glide/SP method against SphK1 drug target. Furthermore, molecular dynamics (MD) simulation was carried out for the compounds <b>12-14</b> and <b>18</b>. The compounds <b>13</b> and <b>14</b> may be potential inhibitor candidates in place of a reference inhibitor. A pharmacophore model was generated with the most potent compound <b>14</b>, and the approved drugs were screened using the modules of Discovery Studio to find similar drugs. Consequently, this comprehensive study encompassing design, synthesis, <i>in vitro</i> and <i>in silico</i> analyses were correlated with the structure-activity relationship between compounds. The findings have the potential to unveil promising drug candidates for future studies.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9767-9786"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, anticancer activity and molecular modeling study of novel substituted triazole linked tetrafluoronaphthalene hybrid derivatives.\",\"authors\":\"Musa Erdoğan, Ferah Comert Onder\",\"doi\":\"10.1080/07391102.2023.2252914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To create some novel anticancer molecules, a library of novel series of various triazoles linked to the hydroxyl group of 5,6,7,8-tetrafluoronaphthalen-1-ol <b>(3)</b> was designed and synthesized <i>via</i> CuAAC reaction '<i>Click Chemistry'</i> of tetrafluoronaphthalene based terminal alkyne with substituted organic azides. The structural characterizations of the targeted Click products <b>9-18</b> were confirmed by FTIR, <sup>1</sup>H NMR, <sup>19</sup>F NMR, <sup>13</sup>C NMR and HRMS spectroscopy. Synthesized compounds were tested in two triple negative breast cancer (TNBC) cell lines to understand their anticancer potentials. According to our findings, compounds <b>14</b> and <b>13</b> showed high cytotoxicity in BT549 cells at 20 μM and 30 μM, respectively. Moreover, these compounds blocked the migration of BT549 cells. In the MDA-MB-231 cell line, compound <b>18</b> exhibited high cytotoxicity and can block cell migration for 24 h. Molecular docking study with synthesized novel compounds was performed by Glide/SP method against SphK1 drug target. Furthermore, molecular dynamics (MD) simulation was carried out for the compounds <b>12-14</b> and <b>18</b>. The compounds <b>13</b> and <b>14</b> may be potential inhibitor candidates in place of a reference inhibitor. A pharmacophore model was generated with the most potent compound <b>14</b>, and the approved drugs were screened using the modules of Discovery Studio to find similar drugs. Consequently, this comprehensive study encompassing design, synthesis, <i>in vitro</i> and <i>in silico</i> analyses were correlated with the structure-activity relationship between compounds. The findings have the potential to unveil promising drug candidates for future studies.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"9767-9786\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2252914\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252914","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis, anticancer activity and molecular modeling study of novel substituted triazole linked tetrafluoronaphthalene hybrid derivatives.
To create some novel anticancer molecules, a library of novel series of various triazoles linked to the hydroxyl group of 5,6,7,8-tetrafluoronaphthalen-1-ol (3) was designed and synthesized via CuAAC reaction 'Click Chemistry' of tetrafluoronaphthalene based terminal alkyne with substituted organic azides. The structural characterizations of the targeted Click products 9-18 were confirmed by FTIR, 1H NMR, 19F NMR, 13C NMR and HRMS spectroscopy. Synthesized compounds were tested in two triple negative breast cancer (TNBC) cell lines to understand their anticancer potentials. According to our findings, compounds 14 and 13 showed high cytotoxicity in BT549 cells at 20 μM and 30 μM, respectively. Moreover, these compounds blocked the migration of BT549 cells. In the MDA-MB-231 cell line, compound 18 exhibited high cytotoxicity and can block cell migration for 24 h. Molecular docking study with synthesized novel compounds was performed by Glide/SP method against SphK1 drug target. Furthermore, molecular dynamics (MD) simulation was carried out for the compounds 12-14 and 18. The compounds 13 and 14 may be potential inhibitor candidates in place of a reference inhibitor. A pharmacophore model was generated with the most potent compound 14, and the approved drugs were screened using the modules of Discovery Studio to find similar drugs. Consequently, this comprehensive study encompassing design, synthesis, in vitro and in silico analyses were correlated with the structure-activity relationship between compounds. The findings have the potential to unveil promising drug candidates for future studies.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.