改变的环境构象动力学作为对肽-三唑类HIV-1灭活剂的抗性机制。

IF 2.7 3区 医学 Q3 VIROLOGY Retrovirology Pub Date : 2021-10-09 DOI:10.1186/s12977-021-00575-z
Shiyu Zhang, Andrew P Holmes, Alexej Dick, Adel A Rashad, Lucía Enríquez Rodríguez, Gabriela A Canziani, Michael J Root, Irwin M Chaiken
{"title":"改变的环境构象动力学作为对肽-三唑类HIV-1灭活剂的抗性机制。","authors":"Shiyu Zhang,&nbsp;Andrew P Holmes,&nbsp;Alexej Dick,&nbsp;Adel A Rashad,&nbsp;Lucía Enríquez Rodríguez,&nbsp;Gabriela A Canziani,&nbsp;Michael J Root,&nbsp;Irwin M Chaiken","doi":"10.1186/s12977-021-00575-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors.</p><p><strong>Results: </strong>HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b.</p><p><strong>Conclusions: </strong>Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"18 1","pages":"31"},"PeriodicalIF":2.7000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501640/pdf/","citationCount":"2","resultStr":"{\"title\":\"Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators.\",\"authors\":\"Shiyu Zhang,&nbsp;Andrew P Holmes,&nbsp;Alexej Dick,&nbsp;Adel A Rashad,&nbsp;Lucía Enríquez Rodríguez,&nbsp;Gabriela A Canziani,&nbsp;Michael J Root,&nbsp;Irwin M Chaiken\",\"doi\":\"10.1186/s12977-021-00575-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors.</p><p><strong>Results: </strong>HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b.</p><p><strong>Conclusions: </strong>Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.</p>\",\"PeriodicalId\":21123,\"journal\":{\"name\":\"Retrovirology\",\"volume\":\"18 1\",\"pages\":\"31\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501640/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Retrovirology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12977-021-00575-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Retrovirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12977-021-00575-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 2

摘要

背景:我们之前开发了药物样肽三唑(PTs),靶向HIV-1包膜(Env) gp120,有效抑制病毒进入,并不可逆地灭活病毒粒子。在这里,我们研究了病毒从这类有前途的HIV-1进入抑制剂中逃逸的潜在机制。结果:在病毒传代实验中,通过剂量递增获得了HIV-1对环状(AAR029b)和线性(KR13) PTs的耐药性。这两种抑制剂的高水平耐药发展缓慢(相对于gp41靶向c肽抑制剂C37的逃逸),通过在假定的PT结合位点(Val255)内和(Ser143)远处获得gp120突变。AAR029b和KR13在耐药谱上的相似性表明,共享的IXW药效团为HIV-1逃逸提供了主要压力。在利用重组病毒进行的单轮感染性研究中,V255I/S143N双逃逸突变体将PT抗病毒效力降低了150- 3900倍。奇怪的是,组合突变对PT与单体gp120结合亲和力的影响要小得多(4到9倍)。这种结合中断完全是由于V255I突变,在分子对接中与PT产生了很少的空间冲突。然而,这种对PT亲和的轻微影响掩盖了很大的影响,抵消了关联焓和熵的变化。逃逸突变对进入过程中CD4结合和利用的影响可以忽略不计,但显著改变了构象特异性抗cd4i抗体17b的结合热力学和抑制效力。此外,逃逸突变显著降低了可溶性CD4或AAR029b诱导的gp120脱落。综上所述,这些数据表明,逃逸突变显著改变了Env前体细胞状态的能量格局,改变了构象动力学,从而阻碍了pt诱导的Env不可逆失活。这项工作揭示了HIV-1的一种独特的病毒逃逸模式,即通过改变Env三聚体的内在构象动力学来抵抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators.

Background: We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors.

Results: HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b.

Conclusions: Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Retrovirology
Retrovirology 医学-病毒学
CiteScore
5.80
自引率
3.00%
发文量
24
审稿时长
>0 weeks
期刊介绍: Retrovirology is an open access, online journal that publishes stringently peer-reviewed, high-impact articles on host-pathogen interactions, fundamental mechanisms of replication, immune defenses, animal models, and clinical science relating to retroviruses. Retroviruses are pleiotropically found in animals. Well-described examples include avian, murine and primate retroviruses. Two human retroviruses are especially important pathogens. These are the human immunodeficiency virus, HIV, and the human T-cell leukemia virus, HTLV. HIV causes AIDS while HTLV-1 is the etiological agent for adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology aims to cover comprehensively all aspects of human and animal retrovirus research.
期刊最新文献
Exploring potential associations between the human microbiota and reservoir of latent HIV. Exceptional molecular and coreceptor-requirement properties of molecular clones isolated from an human immunodeficiency virus Type-1 subtype C infection. HTLV infection in urban population from Mato Grosso do Sul, Central Brazil. Shared and unique patterns of autonomous human endogenous retrovirus loci transcriptomes in CD14 + monocytes from individuals with physical trauma or infection with COVID-19. The KT Jeang retrovirology prize 2024: Walther Mothes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1