{"title":"探索益生菌效应分子及其在肠道免疫相互作用中的作用模式。","authors":"Choong-Gu Lee, Kwang Hyun Cha, Gi-Cheon Kim, Sin-Hyeog Im, Ho-Keun Kwon","doi":"10.1093/femsre/fuad046","DOIUrl":null,"url":null,"abstract":"Probiotics, live microorganisms that confer health benefits when consumed in adequate amounts, have gained significant attention for their potential therapeutic applications. The beneficial effects of probiotics are believed to stem from their ability to enhance intestinal barrier function, inhibit pathogens, increase beneficial gut microbes, and modulate immune responses. However, clinical studies investigating the effectiveness of probiotics have yielded conflicting results, potentially due to the wide variety of probiotic species and strains used, the challenges in controlling the desired number of live microorganisms, and the complex interactions between bioactive substances within probiotics. Bacterial cell wall components, known as effector molecules, play a crucial role in mediating the interaction between probiotics and host receptors, leading to the activation of signaling pathways that contribute to the health-promoting effects. Previous reviews have extensively covered different probiotic effector molecules, highlighting their impact on immune homeostasis. Understanding how each probiotic component modulates immune activity at the molecular level may enable the prediction of immunological outcomes in future clinical studies. In this review, we present a comprehensive overview of the structural and immunological features of probiotic effector molecules, focusing primarily on Lactobacillus and Bifidobacterium. We also discuss current gaps and limitations in the field and propose directions for future research to enhance our understanding of probiotic-mediated immunomodulation.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring probiotic effector molecules and their mode of action in gut-immune interactions.\",\"authors\":\"Choong-Gu Lee, Kwang Hyun Cha, Gi-Cheon Kim, Sin-Hyeog Im, Ho-Keun Kwon\",\"doi\":\"10.1093/femsre/fuad046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probiotics, live microorganisms that confer health benefits when consumed in adequate amounts, have gained significant attention for their potential therapeutic applications. The beneficial effects of probiotics are believed to stem from their ability to enhance intestinal barrier function, inhibit pathogens, increase beneficial gut microbes, and modulate immune responses. However, clinical studies investigating the effectiveness of probiotics have yielded conflicting results, potentially due to the wide variety of probiotic species and strains used, the challenges in controlling the desired number of live microorganisms, and the complex interactions between bioactive substances within probiotics. Bacterial cell wall components, known as effector molecules, play a crucial role in mediating the interaction between probiotics and host receptors, leading to the activation of signaling pathways that contribute to the health-promoting effects. Previous reviews have extensively covered different probiotic effector molecules, highlighting their impact on immune homeostasis. Understanding how each probiotic component modulates immune activity at the molecular level may enable the prediction of immunological outcomes in future clinical studies. In this review, we present a comprehensive overview of the structural and immunological features of probiotic effector molecules, focusing primarily on Lactobacillus and Bifidobacterium. We also discuss current gaps and limitations in the field and propose directions for future research to enhance our understanding of probiotic-mediated immunomodulation.\",\"PeriodicalId\":12201,\"journal\":{\"name\":\"FEMS microbiology reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsre/fuad046\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuad046","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Exploring probiotic effector molecules and their mode of action in gut-immune interactions.
Probiotics, live microorganisms that confer health benefits when consumed in adequate amounts, have gained significant attention for their potential therapeutic applications. The beneficial effects of probiotics are believed to stem from their ability to enhance intestinal barrier function, inhibit pathogens, increase beneficial gut microbes, and modulate immune responses. However, clinical studies investigating the effectiveness of probiotics have yielded conflicting results, potentially due to the wide variety of probiotic species and strains used, the challenges in controlling the desired number of live microorganisms, and the complex interactions between bioactive substances within probiotics. Bacterial cell wall components, known as effector molecules, play a crucial role in mediating the interaction between probiotics and host receptors, leading to the activation of signaling pathways that contribute to the health-promoting effects. Previous reviews have extensively covered different probiotic effector molecules, highlighting their impact on immune homeostasis. Understanding how each probiotic component modulates immune activity at the molecular level may enable the prediction of immunological outcomes in future clinical studies. In this review, we present a comprehensive overview of the structural and immunological features of probiotic effector molecules, focusing primarily on Lactobacillus and Bifidobacterium. We also discuss current gaps and limitations in the field and propose directions for future research to enhance our understanding of probiotic-mediated immunomodulation.
期刊介绍:
Title: FEMS Microbiology Reviews
Journal Focus:
Publishes reviews covering all aspects of microbiology not recently surveyed
Reviews topics of current interest
Provides comprehensive, critical, and authoritative coverage
Offers new perspectives and critical, detailed discussions of significant trends
May contain speculative and selective elements
Aimed at both specialists and general readers
Reviews should be framed within the context of general microbiology and biology
Submission Criteria:
Manuscripts should not be unevaluated compilations of literature
Lectures delivered at symposia must review the related field to be acceptable