核IL-33在egfr介导的角质形成细胞迁移中发挥重要作用,其途径是调节信号转导因子和转录激活因子3和NF-κB的激活

Xiuju Dai , Ken Shiraishi , Jun Muto , Hideki Mori , Masamoto Murakami , Koji Sayama
{"title":"核IL-33在egfr介导的角质形成细胞迁移中发挥重要作用,其途径是调节信号转导因子和转录激活因子3和NF-κB的激活","authors":"Xiuju Dai ,&nbsp;Ken Shiraishi ,&nbsp;Jun Muto ,&nbsp;Hideki Mori ,&nbsp;Masamoto Murakami ,&nbsp;Koji Sayama","doi":"10.1016/j.xjidi.2023.100205","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear IL-33 levels are high at the epidermal edges of skin wounds and facilitate wound healing. However, IL-33−mediated regulation of keratinocyte (KC) biology during wound healing remains poorly understood. During skin-wound healing, KC migration and re-epithelialization are mediated predominantly by EGFR signaling activation and depend on the function of signal transducer and activator of transcription 3 (STAT3). We found that migrating KCs at the leading edges of mouse skin wounds exhibited concomitant induction and nuclear colocalization of IL-33 and phosphorylated STAT3. In cultured human KCs, activation of EGFR signaling caused rapid elevation of nuclear IL-33, which directly interacts with phosphorylated STAT3, promoting STAT3 activation. In vitro KC migration and wound-healing assays revealed that high nuclear IL-33 levels were required for KC migration and wound closure. KC mobility associated with a lack of suprabasal epidermal keratins and extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) control cell migration at the intracellular and extracellular levels, respectively. In EGFR-activated KCs, nuclear IL-33 mediated keratin 1 and 10 downregulation and MMP9 upregulation by promoting STAT3 activation and limited MMP1, MMP3, and MMP10 induction by suppressing NF-κB transactivation. Thus, epidermal nuclear IL-33 is involved in KC migration and wound closure by regulating the STAT3 and NF-κB pathways.</p></div>","PeriodicalId":73548,"journal":{"name":"JID innovations : skin science from molecules to population health","volume":"3 4","pages":"Article 100205"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/94/main.PMC10333683.pdf","citationCount":"0","resultStr":"{\"title\":\"Nuclear IL-33 Plays an Important Role in EGFR-Mediated Keratinocyte Migration by Regulating the Activation of Signal Transducer and Activator of Transcription 3 and NF-κB\",\"authors\":\"Xiuju Dai ,&nbsp;Ken Shiraishi ,&nbsp;Jun Muto ,&nbsp;Hideki Mori ,&nbsp;Masamoto Murakami ,&nbsp;Koji Sayama\",\"doi\":\"10.1016/j.xjidi.2023.100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclear IL-33 levels are high at the epidermal edges of skin wounds and facilitate wound healing. However, IL-33−mediated regulation of keratinocyte (KC) biology during wound healing remains poorly understood. During skin-wound healing, KC migration and re-epithelialization are mediated predominantly by EGFR signaling activation and depend on the function of signal transducer and activator of transcription 3 (STAT3). We found that migrating KCs at the leading edges of mouse skin wounds exhibited concomitant induction and nuclear colocalization of IL-33 and phosphorylated STAT3. In cultured human KCs, activation of EGFR signaling caused rapid elevation of nuclear IL-33, which directly interacts with phosphorylated STAT3, promoting STAT3 activation. In vitro KC migration and wound-healing assays revealed that high nuclear IL-33 levels were required for KC migration and wound closure. KC mobility associated with a lack of suprabasal epidermal keratins and extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) control cell migration at the intracellular and extracellular levels, respectively. In EGFR-activated KCs, nuclear IL-33 mediated keratin 1 and 10 downregulation and MMP9 upregulation by promoting STAT3 activation and limited MMP1, MMP3, and MMP10 induction by suppressing NF-κB transactivation. Thus, epidermal nuclear IL-33 is involved in KC migration and wound closure by regulating the STAT3 and NF-κB pathways.</p></div>\",\"PeriodicalId\":73548,\"journal\":{\"name\":\"JID innovations : skin science from molecules to population health\",\"volume\":\"3 4\",\"pages\":\"Article 100205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/19/94/main.PMC10333683.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JID innovations : skin science from molecules to population health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667026723000280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JID innovations : skin science from molecules to population health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667026723000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核IL-33水平在皮肤伤口的表皮边缘高,促进伤口愈合。然而,IL-33介导的角化细胞(KC)生物学在伤口愈合过程中的调节仍然知之甚少。在皮肤创面愈合过程中,KC迁移和再上皮化主要由EGFR信号激活介导,并依赖于信号换能器和转录激活因子3 (STAT3)的功能。我们发现,在小鼠皮肤伤口边缘迁移的KCs表现出IL-33和磷酸化STAT3的诱导和核共定位。在培养的人类KCs中,EGFR信号的激活引起核IL-33的快速升高,IL-33直接与磷酸化的STAT3相互作用,促进STAT3的激活。体外KC迁移和伤口愈合实验表明,高水平的核IL-33是KC迁移和伤口愈合所必需的。KC的迁移与基底上表皮角蛋白的缺乏和基质金属蛋白酶(MMPs)介导的细胞外基质降解有关,分别在细胞内和细胞外水平控制细胞迁移。在egfr激活的KCs中,核IL-33通过促进STAT3激活介导角蛋白1和10的下调和MMP9的上调,并通过抑制NF-κB的活化限制MMP1、MMP3和MMP10的诱导。因此,表皮核IL-33通过调节STAT3和NF-κB通路参与KC迁移和伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear IL-33 Plays an Important Role in EGFR-Mediated Keratinocyte Migration by Regulating the Activation of Signal Transducer and Activator of Transcription 3 and NF-κB

Nuclear IL-33 levels are high at the epidermal edges of skin wounds and facilitate wound healing. However, IL-33−mediated regulation of keratinocyte (KC) biology during wound healing remains poorly understood. During skin-wound healing, KC migration and re-epithelialization are mediated predominantly by EGFR signaling activation and depend on the function of signal transducer and activator of transcription 3 (STAT3). We found that migrating KCs at the leading edges of mouse skin wounds exhibited concomitant induction and nuclear colocalization of IL-33 and phosphorylated STAT3. In cultured human KCs, activation of EGFR signaling caused rapid elevation of nuclear IL-33, which directly interacts with phosphorylated STAT3, promoting STAT3 activation. In vitro KC migration and wound-healing assays revealed that high nuclear IL-33 levels were required for KC migration and wound closure. KC mobility associated with a lack of suprabasal epidermal keratins and extracellular matrix degradation mediated by matrix metalloproteinases (MMPs) control cell migration at the intracellular and extracellular levels, respectively. In EGFR-activated KCs, nuclear IL-33 mediated keratin 1 and 10 downregulation and MMP9 upregulation by promoting STAT3 activation and limited MMP1, MMP3, and MMP10 induction by suppressing NF-κB transactivation. Thus, epidermal nuclear IL-33 is involved in KC migration and wound closure by regulating the STAT3 and NF-κB pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Cover 1 Corrigendum to ‘Proteomic Profiling of CCCA Reveals Role of Humoral Immune Response Pathway and Metabolic Dysregulation’ JID Innovations, Volume 4, Issue 3, May 2024, 100263 Identification of Associations with Dermatologic Diseases through a Focused GWAS of the UK Biobank From Plant to Patient: A Historical Perspective and Review of Selected Medicinal Plants in Dermatology Spatial Transcriptomics in Inflammatory Skin Diseases Using GeoMx Digital Spatial Profiling: A Practical Guide for Applications in Dermatology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1