酪氨酸激酶抑制剂的代谢激活:最新进展和进一步临床实践。

IF 3.4 2区 医学 Q2 PHARMACOLOGY & PHARMACY Drug Metabolism Reviews Pub Date : 2023-02-01 Epub Date: 2022-12-01 DOI:10.1080/03602532.2022.2149775
Miao Yan, Wenqun Li, Wen-Bo Li, Qi Huang, Jing Li, Hua-Lin Cai, Hui Gong, Bi-Kui Zhang, Yi-Kun Wang
{"title":"酪氨酸激酶抑制剂的代谢激活:最新进展和进一步临床实践。","authors":"Miao Yan, Wenqun Li, Wen-Bo Li, Qi Huang, Jing Li, Hua-Lin Cai, Hui Gong, Bi-Kui Zhang, Yi-Kun Wang","doi":"10.1080/03602532.2022.2149775","DOIUrl":null,"url":null,"abstract":"<p><p>At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.</p>","PeriodicalId":11307,"journal":{"name":"Drug Metabolism Reviews","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice.\",\"authors\":\"Miao Yan, Wenqun Li, Wen-Bo Li, Qi Huang, Jing Li, Hua-Lin Cai, Hui Gong, Bi-Kui Zhang, Yi-Kun Wang\",\"doi\":\"10.1080/03602532.2022.2149775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.</p>\",\"PeriodicalId\":11307,\"journal\":{\"name\":\"Drug Metabolism Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03602532.2022.2149775\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03602532.2022.2149775","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1

摘要

目前,受体酪氨酸激酶信号相关通路已成功介导了抑制肿瘤增殖和促进抗血管生成的癌症治疗效果。酪氨酸激酶抑制剂(TKIs)作为一类新型化疗药物,已被用于有效治疗多种恶性肿瘤。然而,TKIs 的潜在毒副作用,如肝毒性和心脏毒性,限制了其在临床上的应用。代谢激活有可能导致毒性效应。已证实许多 TKIs 在细胞色素 P450 催化活化后会转化为化学反应性/潜在毒性代谢物,从而导致严重的不良反应,包括肝毒性、心脏毒性、皮肤毒性、免疫损伤、线粒体损伤和细胞色素 P450 失活。然而,人们对这些化学反应性/潜在毒性物种如何诱发毒性的确切机制仍然知之甚少。此外,我们还提出了调节活性代谢物的产生可降低 TKIs 毒性的观点。对这一主题的探讨将加深对代谢活化及其内在机制的理解,从而促进 TKIs 的合理使用。本综述总结了有关 TKIs 活性代谢产物及其相关毒性的最新证据。本文为在临床实践中安全使用 TKIs 以及预防和治疗多种 TKIs 不良反应提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice.

At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Metabolism Reviews
Drug Metabolism Reviews 医学-药学
CiteScore
11.10
自引率
1.70%
发文量
21
审稿时长
1 months
期刊介绍: Drug Metabolism Reviews consistently provides critically needed reviews of an impressive array of drug metabolism research-covering established, new, and potential drugs; environmentally toxic chemicals; absorption; metabolism and excretion; and enzymology of all living species. Additionally, the journal offers new hypotheses of interest to diverse groups of medical professionals including pharmacologists, toxicologists, chemists, microbiologists, pharmacokineticists, immunologists, mass spectroscopists, as well as enzymologists working in xenobiotic biotransformation.
期刊最新文献
Metabolism and detection of designer benzodiazepines: a systematic review. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug metabolism and transport mediated the hepatotoxicity of Pleuropterus multiflorus root: a review. Drug transporters in drug disposition - highlights from the year 2023. Insights into pharmacogenetics, drug-gene interactions, and drug-drug-gene interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1