贝伐珠单抗生物仿制药 IBI305 批准后生产细胞系变更的可比性战略和论证。

Q2 Medicine Antibody Therapeutics Pub Date : 2023-08-04 eCollection Date: 2023-07-01 DOI:10.1093/abt/tbad017
Zhouyi Wu, Gangling Xu, Wu He, Chuanfei Yu, Wanqiu Huang, Shirui Zheng, Dian Kang, Michael H Xie, Xingjun Cao, Lan Wang, Kaikun Wei
{"title":"贝伐珠单抗生物仿制药 IBI305 批准后生产细胞系变更的可比性战略和论证。","authors":"Zhouyi Wu, Gangling Xu, Wu He, Chuanfei Yu, Wanqiu Huang, Shirui Zheng, Dian Kang, Michael H Xie, Xingjun Cao, Lan Wang, Kaikun Wei","doi":"10.1093/abt/tbad017","DOIUrl":null,"url":null,"abstract":"<p><p>High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products. Following the quality by design principle and risk assessment, an extensive analytical characterization and three-way comparison was performed by using a panel of advanced analytical methods. Orthogonal and state-of-the-art techniques including nuclear magnetic resonance and high-resolution mass spectrometry were applied to mitigate the potential uncertainties of higher-order structures and to exclude any new sequence variants, scrambled disulfide bonds, glycan moiety and undesired process-related impurities such as host cell proteins. Nonclinical and clinical pharmacokinetics (PK) studies were conducted subsequently to further confirm the comparability. The results demonstrated that the post-change IBI305 was analytically comparable to the pre-change one and similar to the reference product in physicochemical and biological properties, as well as the degradation behaviors in accelerated stability and forced degradation studies. The comparability was further confirmed by comparable PK, pharmacodynamics, toxicological and immunogenicity profiles of nonclinical and clinical studies. The comparability strategy presented here might extend to cell line changes of other post-approval biological products, and particularly set a precedent in China for post-approval cell line change of commercialized biosimilars.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/cd/tbad017.PMC10481892.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparability strategy and demonstration for post-approval production cell line change of a bevacizumab biosimilar IBI305.\",\"authors\":\"Zhouyi Wu, Gangling Xu, Wu He, Chuanfei Yu, Wanqiu Huang, Shirui Zheng, Dian Kang, Michael H Xie, Xingjun Cao, Lan Wang, Kaikun Wei\",\"doi\":\"10.1093/abt/tbad017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products. Following the quality by design principle and risk assessment, an extensive analytical characterization and three-way comparison was performed by using a panel of advanced analytical methods. Orthogonal and state-of-the-art techniques including nuclear magnetic resonance and high-resolution mass spectrometry were applied to mitigate the potential uncertainties of higher-order structures and to exclude any new sequence variants, scrambled disulfide bonds, glycan moiety and undesired process-related impurities such as host cell proteins. Nonclinical and clinical pharmacokinetics (PK) studies were conducted subsequently to further confirm the comparability. The results demonstrated that the post-change IBI305 was analytically comparable to the pre-change one and similar to the reference product in physicochemical and biological properties, as well as the degradation behaviors in accelerated stability and forced degradation studies. The comparability was further confirmed by comparable PK, pharmacodynamics, toxicological and immunogenicity profiles of nonclinical and clinical studies. The comparability strategy presented here might extend to cell line changes of other post-approval biological products, and particularly set a precedent in China for post-approval cell line change of commercialized biosimilars.</p>\",\"PeriodicalId\":36655,\"journal\":{\"name\":\"Antibody Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/cd/tbad017.PMC10481892.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibody Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/abt/tbad017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbad017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

高产细胞系可提高生物治疗产品的可负担性和可用性。在中国上市的贝伐珠单抗生物仿制药 IBI305 在批准后进行了细胞系改造,即从低滴度的 CHO-K1S 改造为高滴度的 CHO-K1SV GS-KO。目前还没有专门针对批准后细胞系变更可比性研究要求的监管指南,而细胞系变更一般被认为是生物制品最复杂的工艺变更。根据设计质量原则和风险评估,我们使用一组先进的分析方法进行了广泛的分析鉴定和三方比较。采用了包括核磁共振和高分辨率质谱在内的最先进的正交技术,以减少高阶结构的潜在不确定性,并排除任何新的序列变体、乱序二硫键、糖分子和与工艺相关的杂质(如宿主细胞蛋白)。随后进行了非临床和临床药代动力学(PK)研究,以进一步确认其可比性。结果表明,换药后的 IBI305 与换药前的 IBI305 在分析上具有可比性,在理化和生物特性上与参比产品相似,在加速稳定性和强制降解研究中的降解行为也与参比产品相似。非临床和临床研究中可比的 PK、药效学、毒理学和免疫原性特征进一步证实了这种可比性。本文提出的可比性策略可推广到其他生物制品的批准后细胞系更换中,特别是在中国开创了商业化生物仿制药批准后细胞系更换的先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparability strategy and demonstration for post-approval production cell line change of a bevacizumab biosimilar IBI305.

High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products. Following the quality by design principle and risk assessment, an extensive analytical characterization and three-way comparison was performed by using a panel of advanced analytical methods. Orthogonal and state-of-the-art techniques including nuclear magnetic resonance and high-resolution mass spectrometry were applied to mitigate the potential uncertainties of higher-order structures and to exclude any new sequence variants, scrambled disulfide bonds, glycan moiety and undesired process-related impurities such as host cell proteins. Nonclinical and clinical pharmacokinetics (PK) studies were conducted subsequently to further confirm the comparability. The results demonstrated that the post-change IBI305 was analytically comparable to the pre-change one and similar to the reference product in physicochemical and biological properties, as well as the degradation behaviors in accelerated stability and forced degradation studies. The comparability was further confirmed by comparable PK, pharmacodynamics, toxicological and immunogenicity profiles of nonclinical and clinical studies. The comparability strategy presented here might extend to cell line changes of other post-approval biological products, and particularly set a precedent in China for post-approval cell line change of commercialized biosimilars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antibody Therapeutics
Antibody Therapeutics Medicine-Immunology and Allergy
CiteScore
8.70
自引率
0.00%
发文量
30
审稿时长
8 weeks
期刊最新文献
AI-based antibody discovery platform identifies novel, diverse, and pharmacologically active therapeutic antibodies against multiple SARS-CoV-2 strains. FcRider: a recombinant Fc nanoparticle with endogenous adjuvant activities for hybrid immunization. A pan-allelic human SIRPα-blocking antibody, ES004-B5, promotes tumor killing by enhancing macrophage phagocytosis and subsequently inducing an effective T-cell response. Correction to: A case study of a bispecific antibody manufacturability assessment and optimization during discovery stage and its implications. The process using a synthetic library that generates multiple diverse human single domain antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1