Kevin D Dayaratna, Drew Gonshorowski, Mary Kolesar
{"title":"美国COVID-19的分层贝叶斯时空模型","authors":"Kevin D Dayaratna, Drew Gonshorowski, Mary Kolesar","doi":"10.1080/02664763.2022.2069232","DOIUrl":null,"url":null,"abstract":"<p><p>We examine the impact of economic, demographic, and mobility-related factors have had on the transmission of COVID-19 in 2020. While many models in the academic literature employ linear/generalized linear models, few contributions exist that incorporate spatial analysis, which is useful for understanding factors influencing the proliferation of the disease before the introduction of vaccines. We utilize a Poisson generalized linear model coupled with a spatial autoregressive structure to do so. Our analysis yields a number of insights including that, in some areas of the country, the counterintuitive result that staying at home can lead to increased disease proliferation. Additionally, we find some positive effects from increased gathering at grocery stores, negative effects of visiting retail stores and workplaces, and even small effects on visiting parks highlighting the complexities travel and migration have on the transmission of diseases.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"50 11-12","pages":"2663-2680"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388819/pdf/CJAS_50_2069232.pdf","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Bayesian spatio-temporal modeling of COVID-19 in the United States.\",\"authors\":\"Kevin D Dayaratna, Drew Gonshorowski, Mary Kolesar\",\"doi\":\"10.1080/02664763.2022.2069232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examine the impact of economic, demographic, and mobility-related factors have had on the transmission of COVID-19 in 2020. While many models in the academic literature employ linear/generalized linear models, few contributions exist that incorporate spatial analysis, which is useful for understanding factors influencing the proliferation of the disease before the introduction of vaccines. We utilize a Poisson generalized linear model coupled with a spatial autoregressive structure to do so. Our analysis yields a number of insights including that, in some areas of the country, the counterintuitive result that staying at home can lead to increased disease proliferation. Additionally, we find some positive effects from increased gathering at grocery stores, negative effects of visiting retail stores and workplaces, and even small effects on visiting parks highlighting the complexities travel and migration have on the transmission of diseases.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"50 11-12\",\"pages\":\"2663-2680\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388819/pdf/CJAS_50_2069232.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2022.2069232\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2022.2069232","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Hierarchical Bayesian spatio-temporal modeling of COVID-19 in the United States.
We examine the impact of economic, demographic, and mobility-related factors have had on the transmission of COVID-19 in 2020. While many models in the academic literature employ linear/generalized linear models, few contributions exist that incorporate spatial analysis, which is useful for understanding factors influencing the proliferation of the disease before the introduction of vaccines. We utilize a Poisson generalized linear model coupled with a spatial autoregressive structure to do so. Our analysis yields a number of insights including that, in some areas of the country, the counterintuitive result that staying at home can lead to increased disease proliferation. Additionally, we find some positive effects from increased gathering at grocery stores, negative effects of visiting retail stores and workplaces, and even small effects on visiting parks highlighting the complexities travel and migration have on the transmission of diseases.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.