Sivaram Subaya Emani, Anton Kan, Timothy Storms, Shanna Bonanno, Jade Law, Sanhita Ray, Neel S Joshi
{"title":"在大肠杆菌Nissle 1917中,质周应激有助于蛋白质分泌和细胞生长之间的权衡。","authors":"Sivaram Subaya Emani, Anton Kan, Timothy Storms, Shanna Bonanno, Jade Law, Sanhita Ray, Neel S Joshi","doi":"10.1093/synbio/ysad013","DOIUrl":null,"url":null,"abstract":"<p><p>Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of <i>Escherichia coli</i> Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems <b>Graphical Abstract</b>.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"8 1","pages":"ysad013"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/ae/ysad013.PMC10439730.pdf","citationCount":"0","resultStr":"{\"title\":\"Periplasmic stress contributes to a trade-off between protein secretion and cell growth in <i>Escherichia coli</i> Nissle 1917.\",\"authors\":\"Sivaram Subaya Emani, Anton Kan, Timothy Storms, Shanna Bonanno, Jade Law, Sanhita Ray, Neel S Joshi\",\"doi\":\"10.1093/synbio/ysad013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of <i>Escherichia coli</i> Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems <b>Graphical Abstract</b>.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"8 1\",\"pages\":\"ysad013\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/ae/ysad013.PMC10439730.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysad013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysad013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Periplasmic stress contributes to a trade-off between protein secretion and cell growth in Escherichia coli Nissle 1917.
Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of Escherichia coli Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems Graphical Abstract.