Xian He, Zhi Chen, Yutao Gao, Wanjing Wang, Meng You
{"title":"锥束计算机断层扫描放射组学特征的再现性和位置稳定性:一项体模研究。","authors":"Xian He, Zhi Chen, Yutao Gao, Wanjing Wang, Meng You","doi":"10.1259/dmfr.20230180","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to determine the reproducibility and location-stability of cone-beam computed tomography (CBCT) radiomic features.</p><p><strong>Methods: </strong>Centrifugal tubes with six concentrations of K<sub>2</sub>HPO<sub>4</sub> solutions (50, 100, 200, 400, 600, and 800 mg ml<sup>-1</sup>) were imaged within a customized phantom. For each concentration, images were captured twice as test and retest sets. Totally, 69 radiomic features were extracted by LIFEx. The reproducibility was assessed between the test and retest sets. We used the concordance correlation coefficient (CCC) to screen qualified features and then compared the differences in the numbers of them under 24 series (four locations groups * six concentrations). The location-stability was assessed using the Kruskal-Wallis test under different concentration sets; likewise, the numbers of qualified features under six test sets were analyzed.</p><p><strong>Results: </strong>There were 20 and 23 qualified features in the reproducibility and location-stability experiments, respectively. In the reproducibility experiment, the performance of the peripheral groups and high-concentration sets was significantly better than the center groups and low-concentration sets. The effect of concentration on the location-stability of features was not monotonic, and the number of qualified features in the low-concentration sets was greater than that in the high-concentration sets. No features were qualified in both experiments.</p><p><strong>Conclusions: </strong>The density and location of the target object can affect the number of reproducible radiomic features, and its density can also affect the number of location-stable radiomic features. The problem of feature reliability should be treated cautiously in radiomic research on CBCT.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"20230180"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reproducibility and location-stability of radiomic features derived from cone-beam computed tomography: a phantom study.\",\"authors\":\"Xian He, Zhi Chen, Yutao Gao, Wanjing Wang, Meng You\",\"doi\":\"10.1259/dmfr.20230180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to determine the reproducibility and location-stability of cone-beam computed tomography (CBCT) radiomic features.</p><p><strong>Methods: </strong>Centrifugal tubes with six concentrations of K<sub>2</sub>HPO<sub>4</sub> solutions (50, 100, 200, 400, 600, and 800 mg ml<sup>-1</sup>) were imaged within a customized phantom. For each concentration, images were captured twice as test and retest sets. Totally, 69 radiomic features were extracted by LIFEx. The reproducibility was assessed between the test and retest sets. We used the concordance correlation coefficient (CCC) to screen qualified features and then compared the differences in the numbers of them under 24 series (four locations groups * six concentrations). The location-stability was assessed using the Kruskal-Wallis test under different concentration sets; likewise, the numbers of qualified features under six test sets were analyzed.</p><p><strong>Results: </strong>There were 20 and 23 qualified features in the reproducibility and location-stability experiments, respectively. In the reproducibility experiment, the performance of the peripheral groups and high-concentration sets was significantly better than the center groups and low-concentration sets. The effect of concentration on the location-stability of features was not monotonic, and the number of qualified features in the low-concentration sets was greater than that in the high-concentration sets. No features were qualified in both experiments.</p><p><strong>Conclusions: </strong>The density and location of the target object can affect the number of reproducible radiomic features, and its density can also affect the number of location-stable radiomic features. The problem of feature reliability should be treated cautiously in radiomic research on CBCT.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\" \",\"pages\":\"20230180\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1259/dmfr.20230180\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1259/dmfr.20230180","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Reproducibility and location-stability of radiomic features derived from cone-beam computed tomography: a phantom study.
Objectives: This study aims to determine the reproducibility and location-stability of cone-beam computed tomography (CBCT) radiomic features.
Methods: Centrifugal tubes with six concentrations of K2HPO4 solutions (50, 100, 200, 400, 600, and 800 mg ml-1) were imaged within a customized phantom. For each concentration, images were captured twice as test and retest sets. Totally, 69 radiomic features were extracted by LIFEx. The reproducibility was assessed between the test and retest sets. We used the concordance correlation coefficient (CCC) to screen qualified features and then compared the differences in the numbers of them under 24 series (four locations groups * six concentrations). The location-stability was assessed using the Kruskal-Wallis test under different concentration sets; likewise, the numbers of qualified features under six test sets were analyzed.
Results: There were 20 and 23 qualified features in the reproducibility and location-stability experiments, respectively. In the reproducibility experiment, the performance of the peripheral groups and high-concentration sets was significantly better than the center groups and low-concentration sets. The effect of concentration on the location-stability of features was not monotonic, and the number of qualified features in the low-concentration sets was greater than that in the high-concentration sets. No features were qualified in both experiments.
Conclusions: The density and location of the target object can affect the number of reproducible radiomic features, and its density can also affect the number of location-stable radiomic features. The problem of feature reliability should be treated cautiously in radiomic research on CBCT.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X