植物系统的萌发建模。

Melissa Tomkins
{"title":"植物系统的萌发建模。","authors":"Melissa Tomkins","doi":"10.1017/qpb.2023.6","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are complex systems made up of many interacting components, ranging from architectural elements such as branches and roots, to entities comprising cellular processes such as metabolic pathways and gene regulatory networks. The collective behaviour of these components, along with the plant's response to the environment, give rise to the plant as a whole. Properties that result from these interactions and cannot be attributed to individual parts alone are called emergent properties, occurring at different time and spatial scales. Deepening our understanding of plant growth and development requires computational tools capable of handling a large number of interactions and a multiscale approach connecting properties across scales. There currently exist few methods able to integrate models across scales, or models capable of predicting new emergent plant properties. This perspective explores current approaches to modelling emergent behaviour in plants, with a focus on how current and future tools can handle multiscale plant systems.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345286/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards modelling emergence in plant systems.\",\"authors\":\"Melissa Tomkins\",\"doi\":\"10.1017/qpb.2023.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are complex systems made up of many interacting components, ranging from architectural elements such as branches and roots, to entities comprising cellular processes such as metabolic pathways and gene regulatory networks. The collective behaviour of these components, along with the plant's response to the environment, give rise to the plant as a whole. Properties that result from these interactions and cannot be attributed to individual parts alone are called emergent properties, occurring at different time and spatial scales. Deepening our understanding of plant growth and development requires computational tools capable of handling a large number of interactions and a multiscale approach connecting properties across scales. There currently exist few methods able to integrate models across scales, or models capable of predicting new emergent plant properties. This perspective explores current approaches to modelling emergent behaviour in plants, with a focus on how current and future tools can handle multiscale plant systems.</p>\",\"PeriodicalId\":20825,\"journal\":{\"name\":\"Quantitative Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qpb.2023.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物是由许多相互作用的成分组成的复杂系统,从枝和根等建筑元素到代谢途径和基因调控网络等细胞过程组成的实体。这些组成部分的集体行为,以及植物对环境的反应,产生了植物作为一个整体。这些相互作用产生的特性不能单独归因于单个部分,称为涌现特性,发生在不同的时间和空间尺度上。加深我们对植物生长和发育的理解需要能够处理大量相互作用的计算工具和跨尺度连接属性的多尺度方法。目前很少有方法能够整合跨尺度的模型,或者能够预测新的植物特性的模型。这一观点探讨了目前植物紧急行为建模的方法,重点是当前和未来的工具如何处理多尺度植物系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards modelling emergence in plant systems.

Plants are complex systems made up of many interacting components, ranging from architectural elements such as branches and roots, to entities comprising cellular processes such as metabolic pathways and gene regulatory networks. The collective behaviour of these components, along with the plant's response to the environment, give rise to the plant as a whole. Properties that result from these interactions and cannot be attributed to individual parts alone are called emergent properties, occurring at different time and spatial scales. Deepening our understanding of plant growth and development requires computational tools capable of handling a large number of interactions and a multiscale approach connecting properties across scales. There currently exist few methods able to integrate models across scales, or models capable of predicting new emergent plant properties. This perspective explores current approaches to modelling emergent behaviour in plants, with a focus on how current and future tools can handle multiscale plant systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Barthlott effect Heritable responses to stress in plants Quantification of pollen viability in Lantana camara by digital holographic microscopy. The 1972 Meadows report: A wake-up call for plant science. Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1