Balasubramanian Vignesh Kumar, Balakrishnan Muthumari, Murugan Kavitha, John Kennedy John Praveen Kumar and Muthuramalingam Jothi Basu
{"title":"揭示细胞内代谢物在以甘蔗糖蜜为基质的新型解淀粉芽孢杆菌产乳酸中的作用。","authors":"Balasubramanian Vignesh Kumar, Balakrishnan Muthumari, Murugan Kavitha, John Kennedy John Praveen Kumar and Muthuramalingam Jothi Basu","doi":"10.1039/D3MO00141E","DOIUrl":null,"url":null,"abstract":"<p >Lactic acid is a versatile, multi-functional organic monomer in various industries, creating worldwide demand. High titer lactic acid production was achieved by novel <em>Bacillus amyloliquefaciens</em> J2V2AA through sugarcane molasses fermentation up to 178 mg mL<small><sup>−1</sup></small>. A metabolomics approach such as combined GC-MS and LC-MS was applied to elucidate the involvement of key metabolites in lactic acid production. The results revealed the participation of 58 known intra-cellular metabolites at various pathways in lactic acid production. Twenty-eight highly up-regulated and down-regulated metabolites were analyzed, and a schematic diagram of a possible lactic acid production pathway was proposed. The produced lactic acid was analyzed through FTIR, UV-Spectrum, and HPLC analysis.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the role of intra-cellular metabolites in the lactic acid production by novel Bacillus amyloliquefaciens using sugarcane molasses as a substratum†\",\"authors\":\"Balasubramanian Vignesh Kumar, Balakrishnan Muthumari, Murugan Kavitha, John Kennedy John Praveen Kumar and Muthuramalingam Jothi Basu\",\"doi\":\"10.1039/D3MO00141E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lactic acid is a versatile, multi-functional organic monomer in various industries, creating worldwide demand. High titer lactic acid production was achieved by novel <em>Bacillus amyloliquefaciens</em> J2V2AA through sugarcane molasses fermentation up to 178 mg mL<small><sup>−1</sup></small>. A metabolomics approach such as combined GC-MS and LC-MS was applied to elucidate the involvement of key metabolites in lactic acid production. The results revealed the participation of 58 known intra-cellular metabolites at various pathways in lactic acid production. Twenty-eight highly up-regulated and down-regulated metabolites were analyzed, and a schematic diagram of a possible lactic acid production pathway was proposed. The produced lactic acid was analyzed through FTIR, UV-Spectrum, and HPLC analysis.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00141e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00141e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unraveling the role of intra-cellular metabolites in the lactic acid production by novel Bacillus amyloliquefaciens using sugarcane molasses as a substratum†
Lactic acid is a versatile, multi-functional organic monomer in various industries, creating worldwide demand. High titer lactic acid production was achieved by novel Bacillus amyloliquefaciens J2V2AA through sugarcane molasses fermentation up to 178 mg mL−1. A metabolomics approach such as combined GC-MS and LC-MS was applied to elucidate the involvement of key metabolites in lactic acid production. The results revealed the participation of 58 known intra-cellular metabolites at various pathways in lactic acid production. Twenty-eight highly up-regulated and down-regulated metabolites were analyzed, and a schematic diagram of a possible lactic acid production pathway was proposed. The produced lactic acid was analyzed through FTIR, UV-Spectrum, and HPLC analysis.