Nagehan Pakasticali, Andrea Chobrutskiy, Dhruv N Patel, Monica Hsiang, Saif Zaman, Konrad J Cios, George Blanck, Boris I Chobrutskiy
{"title":"乳腺癌居民t细胞受体CDR3结构域和癌症抗原ARMC3的化学互补性与更高水平的生存率和颗粒酶表达相关","authors":"Nagehan Pakasticali, Andrea Chobrutskiy, Dhruv N Patel, Monica Hsiang, Saif Zaman, Konrad J Cios, George Blanck, Boris I Chobrutskiy","doi":"10.1177/11769351231177269","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>One of the most pressing goals for cancer immunotherapy at this time is the identification of actionable antigens.</p><p><strong>Methods: </strong>This study relies on the following considerations and approaches to identify potential breast cancer antigens: (i) the significant role of the adaptive immune receptor, complementarity determining region-3 (CDR3) in antigen binding, and the existence cancer testis antigens (CTAs); (ii) chemical attractiveness; and (iii) informing the relevance of the integration of items (i) and (ii) with patient outcome and tumor gene expression data.</p><p><strong>Results: </strong>We have assessed CTAs for associations with survival, based on their chemical complementarity with tumor resident T-cell receptor (TCR), CDR3s. Also, we have established gene expression correlations with the high TCR CDR3-CTA chemical complementarities, for Granzyme B, and other immune biomarkers.</p><p><strong>Conclusions: </strong>Overall, for several independent TCR CDR3 breast cancer datasets, the CTA, ARMC3, stood out as a completely novel, candidate antigen based on multiple algorithms with highly consistent approaches. This conclusion was facilitated by use of the recently constructed Adaptive Match web tool.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/52/10.1177_11769351231177269.PMC10259117.pdf","citationCount":"1","resultStr":"{\"title\":\"Chemical Complementarity of Breast Cancer Resident, T-Cell Receptor CDR3 Domains and the Cancer Antigen, ARMC3, is Associated With Higher Levels of Survival and Granzyme Expression.\",\"authors\":\"Nagehan Pakasticali, Andrea Chobrutskiy, Dhruv N Patel, Monica Hsiang, Saif Zaman, Konrad J Cios, George Blanck, Boris I Chobrutskiy\",\"doi\":\"10.1177/11769351231177269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>One of the most pressing goals for cancer immunotherapy at this time is the identification of actionable antigens.</p><p><strong>Methods: </strong>This study relies on the following considerations and approaches to identify potential breast cancer antigens: (i) the significant role of the adaptive immune receptor, complementarity determining region-3 (CDR3) in antigen binding, and the existence cancer testis antigens (CTAs); (ii) chemical attractiveness; and (iii) informing the relevance of the integration of items (i) and (ii) with patient outcome and tumor gene expression data.</p><p><strong>Results: </strong>We have assessed CTAs for associations with survival, based on their chemical complementarity with tumor resident T-cell receptor (TCR), CDR3s. Also, we have established gene expression correlations with the high TCR CDR3-CTA chemical complementarities, for Granzyme B, and other immune biomarkers.</p><p><strong>Conclusions: </strong>Overall, for several independent TCR CDR3 breast cancer datasets, the CTA, ARMC3, stood out as a completely novel, candidate antigen based on multiple algorithms with highly consistent approaches. This conclusion was facilitated by use of the recently constructed Adaptive Match web tool.</p>\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/52/10.1177_11769351231177269.PMC10259117.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351231177269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351231177269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Chemical Complementarity of Breast Cancer Resident, T-Cell Receptor CDR3 Domains and the Cancer Antigen, ARMC3, is Associated With Higher Levels of Survival and Granzyme Expression.
Introduction: One of the most pressing goals for cancer immunotherapy at this time is the identification of actionable antigens.
Methods: This study relies on the following considerations and approaches to identify potential breast cancer antigens: (i) the significant role of the adaptive immune receptor, complementarity determining region-3 (CDR3) in antigen binding, and the existence cancer testis antigens (CTAs); (ii) chemical attractiveness; and (iii) informing the relevance of the integration of items (i) and (ii) with patient outcome and tumor gene expression data.
Results: We have assessed CTAs for associations with survival, based on their chemical complementarity with tumor resident T-cell receptor (TCR), CDR3s. Also, we have established gene expression correlations with the high TCR CDR3-CTA chemical complementarities, for Granzyme B, and other immune biomarkers.
Conclusions: Overall, for several independent TCR CDR3 breast cancer datasets, the CTA, ARMC3, stood out as a completely novel, candidate antigen based on multiple algorithms with highly consistent approaches. This conclusion was facilitated by use of the recently constructed Adaptive Match web tool.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.