针对幽门螺杆菌粘连蛋白HpaA的鲨鱼VNARs的鉴定与表征。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2023-09-04 DOI:10.1080/21691401.2023.2255635
Yanchun Gao, Ruihong Wang, Lin Liu, Shitao Feng, Xiaozhi Xi, Wengong Yu, Yuchao Gu, Ye Wang
{"title":"针对幽门螺杆菌粘连蛋白HpaA的鲨鱼VNARs的鉴定与表征。","authors":"Yanchun Gao,&nbsp;Ruihong Wang,&nbsp;Lin Liu,&nbsp;Shitao Feng,&nbsp;Xiaozhi Xi,&nbsp;Wengong Yu,&nbsp;Yuchao Gu,&nbsp;Ye Wang","doi":"10.1080/21691401.2023.2255635","DOIUrl":null,"url":null,"abstract":"<p><p><i>Helicobacter pylori</i> (<i>H. pylori</i>) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. <i>H. pylori</i> can adhere to and colonize the gastric mucosa through <i>H. pylori</i> adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of <i>H. pylori</i> infection.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"509-519"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of shark VNARs targeting the <i>Helicobacter pylori</i> adhesin HpaA.\",\"authors\":\"Yanchun Gao,&nbsp;Ruihong Wang,&nbsp;Lin Liu,&nbsp;Shitao Feng,&nbsp;Xiaozhi Xi,&nbsp;Wengong Yu,&nbsp;Yuchao Gu,&nbsp;Ye Wang\",\"doi\":\"10.1080/21691401.2023.2255635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Helicobacter pylori</i> (<i>H. pylori</i>) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. <i>H. pylori</i> can adhere to and colonize the gastric mucosa through <i>H. pylori</i> adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of <i>H. pylori</i> infection.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"51 1\",\"pages\":\"509-519\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2023.2255635\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2023.2255635","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

幽门螺杆菌(Helicobacter pylori, H. pylori)被认为是一种与多种胃肠道疾病相关的病原体。目前的治疗方法有许多缺点,包括抗生素耐药性。幽门螺杆菌可通过幽门螺杆菌粘连素A (HpaA)粘附胃黏膜并定植,抗HpaA抗体可能是治疗幽门螺杆菌的有效途径。免疫球蛋白新抗原受体可变结构域(variable domain of immunoglobulin new antigen receptor, VNAR)是一种体积小、稳定性好、易于制造的新型单域抗体。本研究从免疫鲨鱼VNAR噬菌体展示文库中分离出抗HpaA的VNAR。vnas可以结合重组蛋白和天然HpaA蛋白。vnas 2A2和3D6对不同表位的HpaA具有较高的结合亲和力。此外,构建了二价同源二聚体vnas biNb-2A2和biNb-3D6,以增强其结合亲和力。biNb-2A2和biNb-3D6在胃肠道pH条件下具有良好的稳定性。最后,以BiNb-2A2为捕获抗体,BiNb-3D6为检测抗体,建立夹心ELISA法定量HpaA蛋白。本研究为幽门螺杆菌感染的治疗或诊断提供了新的替代方法的潜在基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and characterization of shark VNARs targeting the Helicobacter pylori adhesin HpaA.

Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
期刊最新文献
Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. HBOC alleviated tumour hypoxia during radiotherapy more intensely in large solid tumours than regular ones. Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. Investigation of pharmacokinetics and immunogenicity of magnetosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1