用于区分健康与疾病的交换微血管中的规范血流速度模型:健康对照与COVID-19病例

IF 2.1 4区 医学 Q3 HEMATOLOGY Clinical hemorheology and microcirculation Pub Date : 2023-01-01 DOI:10.3233/CH-231780
Aristotle G Koutsiaris, Konstantina Riri, Stylianos Boutlas, Zoe Daniil, Evangelia E Tsironi
{"title":"用于区分健康与疾病的交换微血管中的规范血流速度模型:健康对照与COVID-19病例","authors":"Aristotle G Koutsiaris,&nbsp;Konstantina Riri,&nbsp;Stylianos Boutlas,&nbsp;Zoe Daniil,&nbsp;Evangelia E Tsironi","doi":"10.3233/CH-231780","DOIUrl":null,"url":null,"abstract":"<p><p>A usual practice in medicine is to search for \"biomarkers\" which are measurable quantities of a normal or abnormal biological process. Biomarkers can be biochemical or physical quantities of the body and although commonly used statistically in clinical settings, it is not usual for them to be connected to basic physiological models or equations. In this work, a normative blood velocity model framework for the exchange microvessels was introduced, combining the velocity-diffusion (V-J) equation and statistics, in order to define the normative range (NR) and normative area (NA) diagrams for discriminating normal (normemic) from abnormal (hyperemic or underemic) states, taking into account the microvessel diameter D. This is different from the usual statistical processing since there is a basis on the well-known physiological principle of the flow diffusion equation. The discriminative power of the average axial velocity model was successfully tested using a group of healthy individuals (Control Group) and a group of post COVID-19 patients (COVID-19 Group).</p>","PeriodicalId":10425,"journal":{"name":"Clinical hemorheology and microcirculation","volume":"84 2","pages":"215-226"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A normative blood velocity model in the exchange microvessels for discriminating health from disease: Healthy controls versus COVID-19 cases.\",\"authors\":\"Aristotle G Koutsiaris,&nbsp;Konstantina Riri,&nbsp;Stylianos Boutlas,&nbsp;Zoe Daniil,&nbsp;Evangelia E Tsironi\",\"doi\":\"10.3233/CH-231780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A usual practice in medicine is to search for \\\"biomarkers\\\" which are measurable quantities of a normal or abnormal biological process. Biomarkers can be biochemical or physical quantities of the body and although commonly used statistically in clinical settings, it is not usual for them to be connected to basic physiological models or equations. In this work, a normative blood velocity model framework for the exchange microvessels was introduced, combining the velocity-diffusion (V-J) equation and statistics, in order to define the normative range (NR) and normative area (NA) diagrams for discriminating normal (normemic) from abnormal (hyperemic or underemic) states, taking into account the microvessel diameter D. This is different from the usual statistical processing since there is a basis on the well-known physiological principle of the flow diffusion equation. The discriminative power of the average axial velocity model was successfully tested using a group of healthy individuals (Control Group) and a group of post COVID-19 patients (COVID-19 Group).</p>\",\"PeriodicalId\":10425,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\"84 2\",\"pages\":\"215-226\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-231780\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CH-231780","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

医学上通常的做法是寻找“生物标志物”,即正常或异常生物过程的可测量量。生物标志物可以是身体的生化或物理量,尽管在临床环境中通常用于统计,但通常不将它们与基本的生理模型或方程联系起来。在这项工作中,引入了交换微血管的规范血流速度模型框架,结合速度扩散(V-J)方程和统计学,以定义规范范围(NR)和规范面积(NA)图,用于区分正常(规范)和异常(充血或欠血)状态。这与通常的统计处理不同,因为它是以众所周知的流动扩散方程的生理原理为基础的。采用健康人群(对照组)和新冠肺炎后患者(新冠肺炎组)分别对平均轴向速度模型的判别能力进行检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A normative blood velocity model in the exchange microvessels for discriminating health from disease: Healthy controls versus COVID-19 cases.

A usual practice in medicine is to search for "biomarkers" which are measurable quantities of a normal or abnormal biological process. Biomarkers can be biochemical or physical quantities of the body and although commonly used statistically in clinical settings, it is not usual for them to be connected to basic physiological models or equations. In this work, a normative blood velocity model framework for the exchange microvessels was introduced, combining the velocity-diffusion (V-J) equation and statistics, in order to define the normative range (NR) and normative area (NA) diagrams for discriminating normal (normemic) from abnormal (hyperemic or underemic) states, taking into account the microvessel diameter D. This is different from the usual statistical processing since there is a basis on the well-known physiological principle of the flow diffusion equation. The discriminative power of the average axial velocity model was successfully tested using a group of healthy individuals (Control Group) and a group of post COVID-19 patients (COVID-19 Group).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
33.30%
发文量
170
期刊介绍: Clinical Hemorheology and Microcirculation, a peer-reviewed international scientific journal, serves as an aid to understanding the flow properties of blood and the relationship to normal and abnormal physiology. The rapidly expanding science of hemorheology concerns blood, its components and the blood vessels with which blood interacts. It includes perihemorheology, i.e., the rheology of fluid and structures in the perivascular and interstitial spaces as well as the lymphatic system. The clinical aspects include pathogenesis, symptomatology and diagnostic methods, and the fields of prophylaxis and therapy in all branches of medicine and surgery, pharmacology and drug research. The endeavour of the Editors-in-Chief and publishers of Clinical Hemorheology and Microcirculation is to bring together contributions from those working in various fields related to blood flow all over the world. The editors of Clinical Hemorheology and Microcirculation are from those countries in Europe, Asia, Australia and America where appreciable work in clinical hemorheology and microcirculation is being carried out. Each editor takes responsibility to decide on the acceptance of a manuscript. He is required to have the manuscript appraised by two referees and may be one of them himself. The executive editorial office, to which the manuscripts have been submitted, is responsible for rapid handling of the reviewing process. Clinical Hemorheology and Microcirculation accepts original papers, brief communications, mini-reports and letters to the Editors-in-Chief. Review articles, providing general views and new insights into related subjects, are regularly invited by the Editors-in-Chief. Proceedings of international and national conferences on clinical hemorheology (in original form or as abstracts) complete the range of editorial features.
期刊最新文献
Rosuvastatin inhibit ox-LDL-induced platelet activation by the p38/MAPK pathway. PANoptosis and cardiovascular disease: The preventive role of exercise training. Utility of ultrasound in the perioperative phase of carotid endarterectomy and carotid artery stent implantation. Neutrophil/HDL-C, Lymphocyte/HDL-C and Monocyte/HDL-C in subjects with asymptomatic carotid atherosclerosis. Evaluating diagnostic significance: The utilization of elastography and contrast-enhanced ultrasound for differential diagnosis in breast lesions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1