{"title":"POU1F1通过eno1介导的糖酵解重编程促进胃癌干性的作用","authors":"Cheng Tang, Hui Zhang, Wen-Sheng Deng, Ling-Qiang Xiong, Li-Qiang Zhou","doi":"10.1002/kjm2.12720","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer stem cells (CSCs), a rare subset of tumor cells, have been recognized as promotive role on tumor initiation and propagation. Among, aerobic glycolysis, widely clarified in multiple tumor cells, is the key for maintaining cancer stemness. Regrettably, it is largely unknown about the connection of cellular metabolic reprogramming and stemness in gastric carcinoma (GC). Two GC parental cells lines PAMC-82 and SNU-16 and their spheroids were obtained to determine the expression status of POU1F1 using quantitative real-time PCR (qRT-PCR) and western blotting analysis, respectively. Gain or loss-of-function assay was employed to assess its biological effects. Sphere formation and transwell assays were performed to evaluate the stem cell-like traits, including self-renewal capacity, migration and invasion. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted for determining the binding relationship of POU1F1 on ENO1 promoter region. Herein, aberrantly upregulated POU1F1 was observed in spheroids, compared with the parental PAMC-82 and SNU-16 cells, which promoted stem cell-like traits, as representing increasing sphere formation, enhanced cell migration and invasion. Additionally, POU1F1 expression was positively with glycolytic signaling, as displaying increasing glucose consumption, lactic acid production, and extracellular acid ratio (ECAR). Furthermore, POU1F1 was identified to be a transcriptional activator of ENO1, of which overexpression remarkably abolished POU1F1 knockdown-mediated blocking effects. Taken together, we draw a conclusion that POU1F1 facilitated the stem cell-like properties of GC cells through transcriptionally augmenting ENO1 to enhance glycolysis.</p>","PeriodicalId":49946,"journal":{"name":"Kaohsiung Journal of Medical Sciences","volume":"39 9","pages":"904-915"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of POU1F1 promoting the properties of stemness of gastric carcinoma through ENO1-mediated glycolysis reprogramming.\",\"authors\":\"Cheng Tang, Hui Zhang, Wen-Sheng Deng, Ling-Qiang Xiong, Li-Qiang Zhou\",\"doi\":\"10.1002/kjm2.12720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer stem cells (CSCs), a rare subset of tumor cells, have been recognized as promotive role on tumor initiation and propagation. Among, aerobic glycolysis, widely clarified in multiple tumor cells, is the key for maintaining cancer stemness. Regrettably, it is largely unknown about the connection of cellular metabolic reprogramming and stemness in gastric carcinoma (GC). Two GC parental cells lines PAMC-82 and SNU-16 and their spheroids were obtained to determine the expression status of POU1F1 using quantitative real-time PCR (qRT-PCR) and western blotting analysis, respectively. Gain or loss-of-function assay was employed to assess its biological effects. Sphere formation and transwell assays were performed to evaluate the stem cell-like traits, including self-renewal capacity, migration and invasion. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted for determining the binding relationship of POU1F1 on ENO1 promoter region. Herein, aberrantly upregulated POU1F1 was observed in spheroids, compared with the parental PAMC-82 and SNU-16 cells, which promoted stem cell-like traits, as representing increasing sphere formation, enhanced cell migration and invasion. Additionally, POU1F1 expression was positively with glycolytic signaling, as displaying increasing glucose consumption, lactic acid production, and extracellular acid ratio (ECAR). Furthermore, POU1F1 was identified to be a transcriptional activator of ENO1, of which overexpression remarkably abolished POU1F1 knockdown-mediated blocking effects. Taken together, we draw a conclusion that POU1F1 facilitated the stem cell-like properties of GC cells through transcriptionally augmenting ENO1 to enhance glycolysis.</p>\",\"PeriodicalId\":49946,\"journal\":{\"name\":\"Kaohsiung Journal of Medical Sciences\",\"volume\":\"39 9\",\"pages\":\"904-915\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaohsiung Journal of Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/kjm2.12720\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaohsiung Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/kjm2.12720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Role of POU1F1 promoting the properties of stemness of gastric carcinoma through ENO1-mediated glycolysis reprogramming.
Cancer stem cells (CSCs), a rare subset of tumor cells, have been recognized as promotive role on tumor initiation and propagation. Among, aerobic glycolysis, widely clarified in multiple tumor cells, is the key for maintaining cancer stemness. Regrettably, it is largely unknown about the connection of cellular metabolic reprogramming and stemness in gastric carcinoma (GC). Two GC parental cells lines PAMC-82 and SNU-16 and their spheroids were obtained to determine the expression status of POU1F1 using quantitative real-time PCR (qRT-PCR) and western blotting analysis, respectively. Gain or loss-of-function assay was employed to assess its biological effects. Sphere formation and transwell assays were performed to evaluate the stem cell-like traits, including self-renewal capacity, migration and invasion. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted for determining the binding relationship of POU1F1 on ENO1 promoter region. Herein, aberrantly upregulated POU1F1 was observed in spheroids, compared with the parental PAMC-82 and SNU-16 cells, which promoted stem cell-like traits, as representing increasing sphere formation, enhanced cell migration and invasion. Additionally, POU1F1 expression was positively with glycolytic signaling, as displaying increasing glucose consumption, lactic acid production, and extracellular acid ratio (ECAR). Furthermore, POU1F1 was identified to be a transcriptional activator of ENO1, of which overexpression remarkably abolished POU1F1 knockdown-mediated blocking effects. Taken together, we draw a conclusion that POU1F1 facilitated the stem cell-like properties of GC cells through transcriptionally augmenting ENO1 to enhance glycolysis.
期刊介绍:
Kaohsiung Journal of Medical Sciences (KJMS), is the official peer-reviewed open access publication of Kaohsiung Medical University, Taiwan. The journal was launched in 1985 to promote clinical and scientific research in the medical sciences in Taiwan, and to disseminate this research to the international community. It is published monthly by Wiley. KJMS aims to publish original research and review papers in all fields of medicine and related disciplines that are of topical interest to the medical profession. Authors are welcome to submit Perspectives, reviews, original articles, short communications, Correspondence and letters to the editor for consideration.