Priyanka N Prem, David Raj Chellappan, Gino A Kurian
{"title":"腺嘌呤治疗大鼠双侧肾动脉结扎后肾缺血再灌注恢复受损:肾线粒体的作用。","authors":"Priyanka N Prem, David Raj Chellappan, Gino A Kurian","doi":"10.1007/s10863-023-09974-7","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular calcification (VC) and ischemia reperfusion (IR) injury is characterised to have mitochondrial dysfunction. However, the impact of dysfunctional mitochondria associated with vascular calcified rat kidney challenged to IR is not explored and is addressed in the present study. Male Wistar rats were treated with adenine for 20 days to induce chronic kidney dysfunction and VC. After 63 days, renal IR protocol was performed with subsequent recovery for 24 h and 7 days. Various mitochondrial parameters and biochemical assays were performed to assess kidney function, IR injury and its recovery. Adenine-induced rats with VC, decreased creatinine clearance (CrCl), and severe tissue injury demonstrated an increase in renal tissue damage and decreased CrCl after 24 h of IR (CrCl in ml: IR-0.220.02, VC-IR-0.050.01). Incidentally, the 24 h IR pathology in kidney was similar in both VC-IR and normal rat IR. But, the magnitude of dysfunction was higher with VC-IR due to pre-existing basal tissue alterations. We found severed deterioration in mitochondrial quantity and quality supported by low bioenergetic function in both VC basal tissue and IR challenged sample. However, post 7 days of IR, unlike normal rat IR, VC rat IR did not improve CrCl and corresponding mitochondrial damage in terms of quantity and its function were observed. Based on the above findings, we conclude that IR in VC rat adversely affect the post-surgical recovery, mainly due to the ineffective renal mitochondrial functional restoration from the surgery.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired renal ischemia reperfusion recovery after bilateral renal artery ligation in rats treated with adenine: role of renal mitochondria.\",\"authors\":\"Priyanka N Prem, David Raj Chellappan, Gino A Kurian\",\"doi\":\"10.1007/s10863-023-09974-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular calcification (VC) and ischemia reperfusion (IR) injury is characterised to have mitochondrial dysfunction. However, the impact of dysfunctional mitochondria associated with vascular calcified rat kidney challenged to IR is not explored and is addressed in the present study. Male Wistar rats were treated with adenine for 20 days to induce chronic kidney dysfunction and VC. After 63 days, renal IR protocol was performed with subsequent recovery for 24 h and 7 days. Various mitochondrial parameters and biochemical assays were performed to assess kidney function, IR injury and its recovery. Adenine-induced rats with VC, decreased creatinine clearance (CrCl), and severe tissue injury demonstrated an increase in renal tissue damage and decreased CrCl after 24 h of IR (CrCl in ml: IR-0.220.02, VC-IR-0.050.01). Incidentally, the 24 h IR pathology in kidney was similar in both VC-IR and normal rat IR. But, the magnitude of dysfunction was higher with VC-IR due to pre-existing basal tissue alterations. We found severed deterioration in mitochondrial quantity and quality supported by low bioenergetic function in both VC basal tissue and IR challenged sample. However, post 7 days of IR, unlike normal rat IR, VC rat IR did not improve CrCl and corresponding mitochondrial damage in terms of quantity and its function were observed. Based on the above findings, we conclude that IR in VC rat adversely affect the post-surgical recovery, mainly due to the ineffective renal mitochondrial functional restoration from the surgery.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-023-09974-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09974-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Impaired renal ischemia reperfusion recovery after bilateral renal artery ligation in rats treated with adenine: role of renal mitochondria.
Vascular calcification (VC) and ischemia reperfusion (IR) injury is characterised to have mitochondrial dysfunction. However, the impact of dysfunctional mitochondria associated with vascular calcified rat kidney challenged to IR is not explored and is addressed in the present study. Male Wistar rats were treated with adenine for 20 days to induce chronic kidney dysfunction and VC. After 63 days, renal IR protocol was performed with subsequent recovery for 24 h and 7 days. Various mitochondrial parameters and biochemical assays were performed to assess kidney function, IR injury and its recovery. Adenine-induced rats with VC, decreased creatinine clearance (CrCl), and severe tissue injury demonstrated an increase in renal tissue damage and decreased CrCl after 24 h of IR (CrCl in ml: IR-0.220.02, VC-IR-0.050.01). Incidentally, the 24 h IR pathology in kidney was similar in both VC-IR and normal rat IR. But, the magnitude of dysfunction was higher with VC-IR due to pre-existing basal tissue alterations. We found severed deterioration in mitochondrial quantity and quality supported by low bioenergetic function in both VC basal tissue and IR challenged sample. However, post 7 days of IR, unlike normal rat IR, VC rat IR did not improve CrCl and corresponding mitochondrial damage in terms of quantity and its function were observed. Based on the above findings, we conclude that IR in VC rat adversely affect the post-surgical recovery, mainly due to the ineffective renal mitochondrial functional restoration from the surgery.