Mohamed Alhaskir, Matteo Tschesche, Florian Linke, Elisabeth Schriewer, Yvonne Weber, Stefan Wolking, Rainer Röhrig, Henner Koch, Ekaterina Kutafina
{"title":"心电匹配:同步心电数据集用于数据质量比较的方法。","authors":"Mohamed Alhaskir, Matteo Tschesche, Florian Linke, Elisabeth Schriewer, Yvonne Weber, Stefan Wolking, Rainer Röhrig, Henner Koch, Ekaterina Kutafina","doi":"10.3233/SHTI230718","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical assessment of newly developed sensors is important for ensuring their validity. Comparing recordings of emerging electrocardiography (ECG) systems to a reference ECG system requires accurate synchronization of data from both devices. Current methods can be inefficient and prone to errors. To address this issue, three algorithms are presented to synchronize two ECG time series from different recording systems: Binned R-peak Correlation, R-R Interval Correlation, and Average R-peak Distance. These algorithms reduce ECG data to their cyclic features, mitigating inefficiencies and minimizing discrepancies between different recording systems. We evaluate the performance of these algorithms using high-quality data and then assess their robustness after manipulating the R-peaks. Our results show that R-R Interval Correlation was the most efficient, whereas the Average R-peak Distance and Binned R-peak Correlation were more robust against noisy data.</p>","PeriodicalId":39242,"journal":{"name":"Studies in Health Technology and Informatics","volume":"307 ","pages":"225-232"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG Matching: An Approach to Synchronize ECG Datasets for Data Quality Comparisons.\",\"authors\":\"Mohamed Alhaskir, Matteo Tschesche, Florian Linke, Elisabeth Schriewer, Yvonne Weber, Stefan Wolking, Rainer Röhrig, Henner Koch, Ekaterina Kutafina\",\"doi\":\"10.3233/SHTI230718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical assessment of newly developed sensors is important for ensuring their validity. Comparing recordings of emerging electrocardiography (ECG) systems to a reference ECG system requires accurate synchronization of data from both devices. Current methods can be inefficient and prone to errors. To address this issue, three algorithms are presented to synchronize two ECG time series from different recording systems: Binned R-peak Correlation, R-R Interval Correlation, and Average R-peak Distance. These algorithms reduce ECG data to their cyclic features, mitigating inefficiencies and minimizing discrepancies between different recording systems. We evaluate the performance of these algorithms using high-quality data and then assess their robustness after manipulating the R-peaks. Our results show that R-R Interval Correlation was the most efficient, whereas the Average R-peak Distance and Binned R-peak Correlation were more robust against noisy data.</p>\",\"PeriodicalId\":39242,\"journal\":{\"name\":\"Studies in Health Technology and Informatics\",\"volume\":\"307 \",\"pages\":\"225-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Health Technology and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI230718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Health Technology and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI230718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
摘要
对新研制的传感器进行临床评估是保证其有效性的重要手段。比较新兴心电图(ECG)系统和参考心电图系统的记录需要两个设备的数据精确同步。目前的方法效率很低,而且容易出错。为了解决这一问题,提出了三种算法来同步来自不同记录系统的两个ECG时间序列:bin - ned R-peak Correlation、R-R Interval Correlation和平均R-peak Distance。这些算法将心电数据减少到其循环特征,减轻了效率低下并最大限度地减少了不同记录系统之间的差异。我们使用高质量的数据评估这些算法的性能,然后在操纵r峰后评估它们的鲁棒性。我们的研究结果表明,R-R区间相关是最有效的,而平均r -峰距离和分宾r -峰相关对噪声数据更为稳健。
ECG Matching: An Approach to Synchronize ECG Datasets for Data Quality Comparisons.
Clinical assessment of newly developed sensors is important for ensuring their validity. Comparing recordings of emerging electrocardiography (ECG) systems to a reference ECG system requires accurate synchronization of data from both devices. Current methods can be inefficient and prone to errors. To address this issue, three algorithms are presented to synchronize two ECG time series from different recording systems: Binned R-peak Correlation, R-R Interval Correlation, and Average R-peak Distance. These algorithms reduce ECG data to their cyclic features, mitigating inefficiencies and minimizing discrepancies between different recording systems. We evaluate the performance of these algorithms using high-quality data and then assess their robustness after manipulating the R-peaks. Our results show that R-R Interval Correlation was the most efficient, whereas the Average R-peak Distance and Binned R-peak Correlation were more robust against noisy data.
期刊介绍:
This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media.