衰老干细胞功能障碍和年龄相关疾病。

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Stem cells and development Pub Date : 2023-10-01 Epub Date: 2023-09-15 DOI:10.1089/scd.2023.0065
Tongpeng Yue, Deguan Li
{"title":"衰老干细胞功能障碍和年龄相关疾病。","authors":"Tongpeng Yue,&nbsp;Deguan Li","doi":"10.1089/scd.2023.0065","DOIUrl":null,"url":null,"abstract":"<p><p>As the body ages, it experiences a gradual decline in the functioning of cells, tissues, and systems, which eventually leads to dysfunction and increased susceptibility to disease. At the cellular level, a reduction in the activity or number of stem cells is an important feature of cell senescence, and such changes may also directly drive the aging of the organism. Thus, finding ways to prevent or even reverse stem cell senescence holds promise for the development of aging therapies in tissues and organisms. This review discusses the relationship between changes in stem cell senescence, tissues aging, and related diseases, focusing on four categories of tissue stem cells: hematopoietic stem cells, mesenchymal stromal/stem cells (MSCs), intestinal stem cells, and muscle stem cells.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":" ","pages":"581-591"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Senescent Stem Cell Dysfunction and Age-Related Diseases.\",\"authors\":\"Tongpeng Yue,&nbsp;Deguan Li\",\"doi\":\"10.1089/scd.2023.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the body ages, it experiences a gradual decline in the functioning of cells, tissues, and systems, which eventually leads to dysfunction and increased susceptibility to disease. At the cellular level, a reduction in the activity or number of stem cells is an important feature of cell senescence, and such changes may also directly drive the aging of the organism. Thus, finding ways to prevent or even reverse stem cell senescence holds promise for the development of aging therapies in tissues and organisms. This review discusses the relationship between changes in stem cell senescence, tissues aging, and related diseases, focusing on four categories of tissue stem cells: hematopoietic stem cells, mesenchymal stromal/stem cells (MSCs), intestinal stem cells, and muscle stem cells.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\" \",\"pages\":\"581-591\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2023.0065\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2023.0065","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

随着年龄的增长,细胞、组织和系统的功能逐渐下降,最终导致功能障碍和对疾病的易感性增加。在细胞水平上,干细胞活性或数量的减少是细胞衰老的一个重要特征,这种变化也可能直接驱动生物体的衰老。因此,找到预防甚至逆转干细胞衰老的方法,有望在组织和生物体中开发衰老疗法。本文综述了干细胞衰老、组织衰老和相关疾病的变化之间的关系,重点讨论了四类组织干细胞:造血干细胞、间充质基质/干细胞、肠道干细胞和肌肉干细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Senescent Stem Cell Dysfunction and Age-Related Diseases.

As the body ages, it experiences a gradual decline in the functioning of cells, tissues, and systems, which eventually leads to dysfunction and increased susceptibility to disease. At the cellular level, a reduction in the activity or number of stem cells is an important feature of cell senescence, and such changes may also directly drive the aging of the organism. Thus, finding ways to prevent or even reverse stem cell senescence holds promise for the development of aging therapies in tissues and organisms. This review discusses the relationship between changes in stem cell senescence, tissues aging, and related diseases, focusing on four categories of tissue stem cells: hematopoietic stem cells, mesenchymal stromal/stem cells (MSCs), intestinal stem cells, and muscle stem cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
期刊最新文献
Applications of Plant-made Fibroblast Growth Factor for Human Pluripotent Stem Cells Retinal Organoid Models Show Heterozygous Rhodopsin Mutation Favors Endoplasmic Reticulum Stress-Induced Apoptosis in Rods. MicroRNAs as Prognostic Markers for Chondrogenic Differentiation Potential of Equine Mesenchymal Stromal Cells. Mesenchymal Stromal Cells Regulate M1/M2 Macrophage Polarization in Mice with Immune Thrombocytopenia. The Induction of Parathyroid Cell Differentiation from Human Induced Pluripotent Stem Cells Promoted Via TGF-α/EGFR Signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1