Yan Sun, Yonghong Tan, Dingyuan Yan, Yixiong Gui, Wenshuai Luo, Dongxia Zhu, Dong Wang, Ben Zhong Tang
{"title":"原位肿瘤光电治疗用AIE活性材料的最新进展。","authors":"Yan Sun, Yonghong Tan, Dingyuan Yan, Yixiong Gui, Wenshuai Luo, Dongxia Zhu, Dong Wang, Ben Zhong Tang","doi":"10.1002/wnan.1906","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer ranks as a leading threat to human life and health. Compared to conventional cancer treatments, phototheranostics shares the advantages of integrated diagnosis and therapy, outstanding therapeutic performance and good controllability. Amid diverse phototheranostic agents, small organic luminogens with aggregation-induced emission (AIEgen) tendency show predominant advantages in terms of superior photostability, large Stokes shifts, and boosted theranostic capacity as aggregates. In the past two decades, AIE-active materials have demonstrated formidable applications in disease theranostics, especially for tumors. This review mainly highlights the recent advances of orthotopic tumor phototheranostics mediated by AIEgens with a classification of different organs. Additionally, a brief discussion of current bottlenecks and future directions is outlined. We believe this review can deepen the understanding and spur more innovations on tumor theranostics by employing AIEgens. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 5","pages":"e1906"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances of AIE-active materials for orthotopic tumor phototheranostics.\",\"authors\":\"Yan Sun, Yonghong Tan, Dingyuan Yan, Yixiong Gui, Wenshuai Luo, Dongxia Zhu, Dong Wang, Ben Zhong Tang\",\"doi\":\"10.1002/wnan.1906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer ranks as a leading threat to human life and health. Compared to conventional cancer treatments, phototheranostics shares the advantages of integrated diagnosis and therapy, outstanding therapeutic performance and good controllability. Amid diverse phototheranostic agents, small organic luminogens with aggregation-induced emission (AIEgen) tendency show predominant advantages in terms of superior photostability, large Stokes shifts, and boosted theranostic capacity as aggregates. In the past two decades, AIE-active materials have demonstrated formidable applications in disease theranostics, especially for tumors. This review mainly highlights the recent advances of orthotopic tumor phototheranostics mediated by AIEgens with a classification of different organs. Additionally, a brief discussion of current bottlenecks and future directions is outlined. We believe this review can deepen the understanding and spur more innovations on tumor theranostics by employing AIEgens. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"15 5\",\"pages\":\"e1906\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1906\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1906","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Recent advances of AIE-active materials for orthotopic tumor phototheranostics.
Cancer ranks as a leading threat to human life and health. Compared to conventional cancer treatments, phototheranostics shares the advantages of integrated diagnosis and therapy, outstanding therapeutic performance and good controllability. Amid diverse phototheranostic agents, small organic luminogens with aggregation-induced emission (AIEgen) tendency show predominant advantages in terms of superior photostability, large Stokes shifts, and boosted theranostic capacity as aggregates. In the past two decades, AIE-active materials have demonstrated formidable applications in disease theranostics, especially for tumors. This review mainly highlights the recent advances of orthotopic tumor phototheranostics mediated by AIEgens with a classification of different organs. Additionally, a brief discussion of current bottlenecks and future directions is outlined. We believe this review can deepen the understanding and spur more innovations on tumor theranostics by employing AIEgens. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.