压缩拉曼分类和光谱重建的最佳权衡滤波器。

IF 1.4 3区 物理与天体物理 Q3 OPTICS Journal of The Optical Society of America A-optics Image Science and Vision Pub Date : 2023-06-01 DOI:10.1364/JOSAA.479569
Timothée Justel, Frédéric Galland, Antoine Roueff
{"title":"压缩拉曼分类和光谱重建的最佳权衡滤波器。","authors":"Timothée Justel,&nbsp;Frédéric Galland,&nbsp;Antoine Roueff","doi":"10.1364/JOSAA.479569","DOIUrl":null,"url":null,"abstract":"<p><p>Compressed Raman spectroscopy is a promising technique for fast chemical analysis. In particular, classification between species with known spectra can be performed with measures acquired through a few binary filters. Moreover, it is possible to reconstruct spectra by using enough filters. As classification and reconstruction are competing, designing filters allowing one to perform both tasks is challenging. To tackle this problem, we propose to build optimal trade-off filters, i.e., filters so that there exist no filters achieving better performance in both classification and reconstruction. With this approach, users get an overview of reachable performance and can choose the trade-off most fitting their application.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal trade-off filters for compressed Raman classification and spectrum reconstruction.\",\"authors\":\"Timothée Justel,&nbsp;Frédéric Galland,&nbsp;Antoine Roueff\",\"doi\":\"10.1364/JOSAA.479569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compressed Raman spectroscopy is a promising technique for fast chemical analysis. In particular, classification between species with known spectra can be performed with measures acquired through a few binary filters. Moreover, it is possible to reconstruct spectra by using enough filters. As classification and reconstruction are competing, designing filters allowing one to perform both tasks is challenging. To tackle this problem, we propose to build optimal trade-off filters, i.e., filters so that there exist no filters achieving better performance in both classification and reconstruction. With this approach, users get an overview of reachable performance and can choose the trade-off most fitting their application.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.479569\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.479569","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

压缩拉曼光谱是一种很有前途的快速化学分析技术。特别是,具有已知光谱的物种之间的分类可以通过几个二元滤波器获得。此外,使用足够的滤波器可以重建光谱。由于分类和重建是相互竞争的,设计一个允许同时执行两项任务的过滤器是具有挑战性的。为了解决这个问题,我们提出构建最优权衡滤波器,即滤波器,以便不存在在分类和重构方面都具有更好性能的滤波器。使用这种方法,用户可以获得可达性能的概览,并可以选择最适合其应用程序的折衷方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal trade-off filters for compressed Raman classification and spectrum reconstruction.

Compressed Raman spectroscopy is a promising technique for fast chemical analysis. In particular, classification between species with known spectra can be performed with measures acquired through a few binary filters. Moreover, it is possible to reconstruct spectra by using enough filters. As classification and reconstruction are competing, designing filters allowing one to perform both tasks is challenging. To tackle this problem, we propose to build optimal trade-off filters, i.e., filters so that there exist no filters achieving better performance in both classification and reconstruction. With this approach, users get an overview of reachable performance and can choose the trade-off most fitting their application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
期刊最新文献
Estimating the time-evolving refractivity of a turbulent medium using optical beam measurements: a data assimilation approach. Evaluating the beam shape coefficients of Bessel-Gauss beams with radial quadrature: a comparison with angular spectrum decomposition and finite series methods. Improper statistics of the radiation from a randomly rotating source. Orientation-based solar noise impact on underwater and free-space optical wireless communication systems: experimental investigations. Routing light with different wavevectors using synthetic dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1