Hassen Jemaa, Michael Eisenburger, Andreas Greuling
{"title":"半自动生成牙科植入物周围的骨质流失缺陷,并将其应用于有限元分析。","authors":"Hassen Jemaa, Michael Eisenburger, Andreas Greuling","doi":"10.1080/10255842.2023.2257345","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop an algorithm for modelling bone loss defects in a given mandibular geometry, with a user-defined depth, width, place, and defect type. The algorithm was implemented using Grasshopper and models with different bone loss types and depths around a dental implant were built. The models were used in a finite element analysis (FEA) to predict the stresses in peri-implant bone. The FEA showed that the stresses in peri-implant bone depend primarily on the depth of bone loss, whereas the type of bone loss showed no major influence.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-automated generation of bone loss defects around dental implants and its application in finite element analysis.\",\"authors\":\"Hassen Jemaa, Michael Eisenburger, Andreas Greuling\",\"doi\":\"10.1080/10255842.2023.2257345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to develop an algorithm for modelling bone loss defects in a given mandibular geometry, with a user-defined depth, width, place, and defect type. The algorithm was implemented using Grasshopper and models with different bone loss types and depths around a dental implant were built. The models were used in a finite element analysis (FEA) to predict the stresses in peri-implant bone. The FEA showed that the stresses in peri-implant bone depend primarily on the depth of bone loss, whereas the type of bone loss showed no major influence.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2257345\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2257345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Semi-automated generation of bone loss defects around dental implants and its application in finite element analysis.
This study aimed to develop an algorithm for modelling bone loss defects in a given mandibular geometry, with a user-defined depth, width, place, and defect type. The algorithm was implemented using Grasshopper and models with different bone loss types and depths around a dental implant were built. The models were used in a finite element analysis (FEA) to predict the stresses in peri-implant bone. The FEA showed that the stresses in peri-implant bone depend primarily on the depth of bone loss, whereas the type of bone loss showed no major influence.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.