姜黄素的神经保护作用及其在神经退行性疾病治疗中的潜在应用

Q3 Medicine Postepy biochemii Pub Date : 2023-03-31 DOI:10.18388/pb.2021_472
Mikołaj Górka, Natalia Białoń, Dominika Bieczek, Dariusz Górka
{"title":"姜黄素的神经保护作用及其在神经退行性疾病治疗中的潜在应用","authors":"Mikołaj Górka,&nbsp;Natalia Białoń,&nbsp;Dominika Bieczek,&nbsp;Dariusz Górka","doi":"10.18388/pb.2021_472","DOIUrl":null,"url":null,"abstract":"<p><p>The development of methods used in molecular biology has allowed a milestone in medical and pharmaceutical sciences. Progress has also been made in the field of pharmacognosy, which places substances of natural origin contained in plant raw materials at the center of attention. The beneficial effects of some of them have been known for years, while scientific evidence of their health-promoting properties was lacking for a long time. This was also the case with curcumin and the long road from its isolation in pure form in 1842 to the knowledge of its chemical structure in 1910. Due to the chemical properties of the molecule, curcumin is attributed with many health-promoting properties. These affect many organ systems including the skin, visual pathway, respiratory system, circulatory system, digestive system and nervous system. One of the complications that follow nerve damage is the loss of locomotor function in the animal and the development of inflammation within it. Curcumin has anti-inflammatory properties. This is confirmed by its inhibition of nuclear factor κB, a mediator in inflammatory processes. In addition, a very important field associated with neuronal dysfunction is the aging process. This is caused, among other things, by the presence of reactive oxygen species. The neuroprotective effect of curcumin allows to reduce their concentration caused by the accumulation of mutations within the mitochondrial DNA. The beneficial effect on the nervous system is due to the penetration of curcumin across the blood-brain barrier. However, its poor solubility significantly limits the therapeutic properties resulting from curcumin supplementation. Methods are currently being developed to increase its bioavailability using nanoparticles.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"69 1","pages":"18-25"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective effect of curcumin and its potential use in the treatment of neurodegenerative diseases\",\"authors\":\"Mikołaj Górka,&nbsp;Natalia Białoń,&nbsp;Dominika Bieczek,&nbsp;Dariusz Górka\",\"doi\":\"10.18388/pb.2021_472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of methods used in molecular biology has allowed a milestone in medical and pharmaceutical sciences. Progress has also been made in the field of pharmacognosy, which places substances of natural origin contained in plant raw materials at the center of attention. The beneficial effects of some of them have been known for years, while scientific evidence of their health-promoting properties was lacking for a long time. This was also the case with curcumin and the long road from its isolation in pure form in 1842 to the knowledge of its chemical structure in 1910. Due to the chemical properties of the molecule, curcumin is attributed with many health-promoting properties. These affect many organ systems including the skin, visual pathway, respiratory system, circulatory system, digestive system and nervous system. One of the complications that follow nerve damage is the loss of locomotor function in the animal and the development of inflammation within it. Curcumin has anti-inflammatory properties. This is confirmed by its inhibition of nuclear factor κB, a mediator in inflammatory processes. In addition, a very important field associated with neuronal dysfunction is the aging process. This is caused, among other things, by the presence of reactive oxygen species. The neuroprotective effect of curcumin allows to reduce their concentration caused by the accumulation of mutations within the mitochondrial DNA. The beneficial effect on the nervous system is due to the penetration of curcumin across the blood-brain barrier. However, its poor solubility significantly limits the therapeutic properties resulting from curcumin supplementation. Methods are currently being developed to increase its bioavailability using nanoparticles.</p>\",\"PeriodicalId\":20335,\"journal\":{\"name\":\"Postepy biochemii\",\"volume\":\"69 1\",\"pages\":\"18-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postepy biochemii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18388/pb.2021_472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postepy biochemii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18388/pb.2021_472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

分子生物学方法的发展使医学和制药科学取得了里程碑式的进展。生药学领域也取得了进展,它将植物原料中含有的天然物质置于关注的中心。其中一些的有益作用已经为人所知多年,而长期以来缺乏其促进健康特性的科学证据。姜黄素也是如此,从1842年分离出纯形式到1910年了解其化学结构的漫长道路也是如此。由于分子的化学性质,姜黄素被认为具有许多促进健康的特性。这些影响许多器官系统,包括皮肤、视觉通路、呼吸系统、循环系统、消化系统和神经系统。神经损伤后的并发症之一是动物运动功能的丧失和炎症的发展。姜黄素具有抗炎特性。这是由其抑制核因子κB,炎症过程的中介证实。此外,与神经元功能障碍相关的一个非常重要的领域是衰老过程。这是由活性氧的存在引起的。姜黄素的神经保护作用可以降低线粒体DNA中突变积累引起的浓度。对神经系统的有益作用是由于姜黄素穿过血脑屏障的渗透。然而,其溶解度差极大地限制了姜黄素补充剂的治疗效果。目前正在开发利用纳米颗粒提高其生物利用度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuroprotective effect of curcumin and its potential use in the treatment of neurodegenerative diseases

The development of methods used in molecular biology has allowed a milestone in medical and pharmaceutical sciences. Progress has also been made in the field of pharmacognosy, which places substances of natural origin contained in plant raw materials at the center of attention. The beneficial effects of some of them have been known for years, while scientific evidence of their health-promoting properties was lacking for a long time. This was also the case with curcumin and the long road from its isolation in pure form in 1842 to the knowledge of its chemical structure in 1910. Due to the chemical properties of the molecule, curcumin is attributed with many health-promoting properties. These affect many organ systems including the skin, visual pathway, respiratory system, circulatory system, digestive system and nervous system. One of the complications that follow nerve damage is the loss of locomotor function in the animal and the development of inflammation within it. Curcumin has anti-inflammatory properties. This is confirmed by its inhibition of nuclear factor κB, a mediator in inflammatory processes. In addition, a very important field associated with neuronal dysfunction is the aging process. This is caused, among other things, by the presence of reactive oxygen species. The neuroprotective effect of curcumin allows to reduce their concentration caused by the accumulation of mutations within the mitochondrial DNA. The beneficial effect on the nervous system is due to the penetration of curcumin across the blood-brain barrier. However, its poor solubility significantly limits the therapeutic properties resulting from curcumin supplementation. Methods are currently being developed to increase its bioavailability using nanoparticles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Postepy biochemii
Postepy biochemii Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
36
期刊最新文献
Mutations and their consequences in the development of pancreatic cancer Pharmacogenomics in the treatment of mental disorders. Silica nanoparticles in sustainable agriculture Will a glaucoma drug revolutionize the treatment of androgenetic alopecia? On drug repurposing, when the side effect becomes a desired therapeutic outcome. The role of gut microbiota and its metabolites in obesity and diabetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1