{"title":"在西尼罗河病毒感染小鼠诱导的各种小胶质细胞表型中检测疾病相关的小胶质细胞。","authors":"Passawat Thammahakin, Keisuke Maezono, Naoya Maekawa, Hiroaki Kariwa, Shintaro Kobayashi","doi":"10.1007/s13365-023-01161-z","DOIUrl":null,"url":null,"abstract":"<p><p>West Nile virus (WNV) has emerged as a significant cause of viral encephalitis in humans and horses. However, the pathogenesis of the West Nile encephalitis remains unclear. Microglia are activated by WNV infection, and the pathogenic involvement of their phenotypes is controversial. In this study, we examined the diversity of microglia phenotypes caused by WNV infection by assessing various microglia markers and identified disease-associated microglia in WNV-infected mouse brain tissue. Cells positive for general microglia markers such as Iba1, P2RY12, or TMEM119 were detected in the control and WNV-infected brain tissue. The morphology of the positive cells in brain tissue infected by WNV was different from that of control brain tissue, indicating that WNV infection induced activation of microglia. The activated microglia were classified into various phenotypes by investigation of specific marker expression. Among the activated microglia, disease-associated microglia that were positive for CD11c and weakly positive for TMEM119 were detected close to the WNV-infected cells. These results indicate that WNV infection induces activation of diverse microglia phenotypes and that disease-associated microglia may be associated with the pathogenicity of WNV infection in the mouse brain.</p>","PeriodicalId":16665,"journal":{"name":"Journal of NeuroVirology","volume":"29 4","pages":"367-375"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of disease-associated microglia among various microglia phenotypes induced by West Nile virus infection in mice.\",\"authors\":\"Passawat Thammahakin, Keisuke Maezono, Naoya Maekawa, Hiroaki Kariwa, Shintaro Kobayashi\",\"doi\":\"10.1007/s13365-023-01161-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>West Nile virus (WNV) has emerged as a significant cause of viral encephalitis in humans and horses. However, the pathogenesis of the West Nile encephalitis remains unclear. Microglia are activated by WNV infection, and the pathogenic involvement of their phenotypes is controversial. In this study, we examined the diversity of microglia phenotypes caused by WNV infection by assessing various microglia markers and identified disease-associated microglia in WNV-infected mouse brain tissue. Cells positive for general microglia markers such as Iba1, P2RY12, or TMEM119 were detected in the control and WNV-infected brain tissue. The morphology of the positive cells in brain tissue infected by WNV was different from that of control brain tissue, indicating that WNV infection induced activation of microglia. The activated microglia were classified into various phenotypes by investigation of specific marker expression. Among the activated microglia, disease-associated microglia that were positive for CD11c and weakly positive for TMEM119 were detected close to the WNV-infected cells. These results indicate that WNV infection induces activation of diverse microglia phenotypes and that disease-associated microglia may be associated with the pathogenicity of WNV infection in the mouse brain.</p>\",\"PeriodicalId\":16665,\"journal\":{\"name\":\"Journal of NeuroVirology\",\"volume\":\"29 4\",\"pages\":\"367-375\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroVirology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13365-023-01161-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroVirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13365-023-01161-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Detection of disease-associated microglia among various microglia phenotypes induced by West Nile virus infection in mice.
West Nile virus (WNV) has emerged as a significant cause of viral encephalitis in humans and horses. However, the pathogenesis of the West Nile encephalitis remains unclear. Microglia are activated by WNV infection, and the pathogenic involvement of their phenotypes is controversial. In this study, we examined the diversity of microglia phenotypes caused by WNV infection by assessing various microglia markers and identified disease-associated microglia in WNV-infected mouse brain tissue. Cells positive for general microglia markers such as Iba1, P2RY12, or TMEM119 were detected in the control and WNV-infected brain tissue. The morphology of the positive cells in brain tissue infected by WNV was different from that of control brain tissue, indicating that WNV infection induced activation of microglia. The activated microglia were classified into various phenotypes by investigation of specific marker expression. Among the activated microglia, disease-associated microglia that were positive for CD11c and weakly positive for TMEM119 were detected close to the WNV-infected cells. These results indicate that WNV infection induces activation of diverse microglia phenotypes and that disease-associated microglia may be associated with the pathogenicity of WNV infection in the mouse brain.
期刊介绍:
The Journal of NeuroVirology (JNV) provides a unique platform for the publication of high-quality basic science and clinical studies on the molecular biology and pathogenesis of viral infections of the nervous system, and for reporting on the development of novel therapeutic strategies using neurotropic viral vectors. The Journal also emphasizes publication of non-viral infections that affect the central nervous system. The Journal publishes original research articles, reviews, case reports, coverage of various scientific meetings, along with supplements and special issues on selected subjects.
The Journal is currently accepting submissions of original work from the following basic and clinical research areas: Aging & Neurodegeneration, Apoptosis, CNS Signal Transduction, Emerging CNS Infections, Molecular Virology, Neural-Immune Interaction, Novel Diagnostics, Novel Therapeutics, Stem Cell Biology, Transmissable Encephalopathies/Prion, Vaccine Development, Viral Genomics, Viral Neurooncology, Viral Neurochemistry, Viral Neuroimmunology, Viral Neuropharmacology.