一种监督式机器学习算法预测经蝶腔手术治疗垂体腺瘤术中脑脊液泄漏。

IF 1.3 4区 医学 Q4 CLINICAL NEUROLOGY Journal of neurosurgical sciences Pub Date : 2023-08-01 DOI:10.23736/S0390-5616.21.05295-4
Leonardo Tariciotti, Giorgio Fiore, Giorgio Carrabba, Giulio A Bertani, Luigi Schisano, Stefano Borsa, Emanuele Ferrante, Valerio M Caccavella, Pierpaolo Mattogno, Martina Giordano, Giulia Remoli, Giovanna Mantovani, Marco Locatelli
{"title":"一种监督式机器学习算法预测经蝶腔手术治疗垂体腺瘤术中脑脊液泄漏。","authors":"Leonardo Tariciotti,&nbsp;Giorgio Fiore,&nbsp;Giorgio Carrabba,&nbsp;Giulio A Bertani,&nbsp;Luigi Schisano,&nbsp;Stefano Borsa,&nbsp;Emanuele Ferrante,&nbsp;Valerio M Caccavella,&nbsp;Pierpaolo Mattogno,&nbsp;Martina Giordano,&nbsp;Giulia Remoli,&nbsp;Giovanna Mantovani,&nbsp;Marco Locatelli","doi":"10.23736/S0390-5616.21.05295-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.</p><p><strong>Methods: </strong>A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.</p><p><strong>Results: </strong>Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk's predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).</p><p><strong>Conclusions: </strong>The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs.</p>","PeriodicalId":16504,"journal":{"name":"Journal of neurosurgical sciences","volume":"67 4","pages":"393-407"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A supervised machine-learning algorithm predicts intraoperative CSF leak in endoscopic transsphenoidal surgery for pituitary adenomas.\",\"authors\":\"Leonardo Tariciotti,&nbsp;Giorgio Fiore,&nbsp;Giorgio Carrabba,&nbsp;Giulio A Bertani,&nbsp;Luigi Schisano,&nbsp;Stefano Borsa,&nbsp;Emanuele Ferrante,&nbsp;Valerio M Caccavella,&nbsp;Pierpaolo Mattogno,&nbsp;Martina Giordano,&nbsp;Giulia Remoli,&nbsp;Giovanna Mantovani,&nbsp;Marco Locatelli\",\"doi\":\"10.23736/S0390-5616.21.05295-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.</p><p><strong>Methods: </strong>A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.</p><p><strong>Results: </strong>Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk's predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).</p><p><strong>Conclusions: </strong>The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs.</p>\",\"PeriodicalId\":16504,\"journal\":{\"name\":\"Journal of neurosurgical sciences\",\"volume\":\"67 4\",\"pages\":\"393-407\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurosurgical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23736/S0390-5616.21.05295-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0390-5616.21.05295-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1

摘要

背景:尽管经鼻蝶腔内窥镜手术(E-TNS)治疗垂体腺瘤(PAs)取得了进展,但脑脊液(CSF)渗漏仍然是危及生命的并发症,易导致主要发病率和死亡率。在当前的研究中,我们通过比较不同的机器学习(ML)方法并解释最佳算法的功能和基本原理,开发了一个有监督的ML模型,能够预测术中脑脊液泄漏的风险。方法:选择238例经E-TNS治疗PAs的患者作为回顾性队列。对多个机器学习模型进行了编程和训练;最好的5个模型在hold-out测试中进行测试,然后在35名最近接受治疗的患者的队列中前瞻性地验证最佳分类器。结果:238例患者中,术中发生脑脊液漏54例(22.6%)。最重要的风险预测因子是:无分泌状态、年龄、x、y、z轴直径、骨硬膜侵入性、体积、ICD和r比。随机森林(RF)分类器优于其他模型,AUC为0.84,灵敏度(86%)和特异性(88%)高。阳性预测值为88%,阴性预测值为80%。F1评分为0.84。前瞻性验证证实了出色的性能指标:AUC(0.81)、灵敏度(83%)、特异性(79%)、阴性预测值(95%)和F1评分(0.75)。结论:射频分类器在所有选择的模型中表现出最好的性能。RF模型可以预测异质多疾病和脆弱人群的手术结果,优于经典统计分析和其他ML模型(SVM, ANN等),改善患者管理,减少可预防的发病率和额外费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A supervised machine-learning algorithm predicts intraoperative CSF leak in endoscopic transsphenoidal surgery for pituitary adenomas.

Background: Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.

Methods: A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.

Results: Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk's predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).

Conclusions: The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurosurgical sciences
Journal of neurosurgical sciences CLINICAL NEUROLOGY-SURGERY
CiteScore
3.00
自引率
5.30%
发文量
202
审稿时长
>12 weeks
期刊介绍: The Journal of Neurosurgical Sciences publishes scientific papers on neurosurgery and related subjects (electroencephalography, neurophysiology, neurochemistry, neuropathology, stereotaxy, neuroanatomy, neuroradiology, etc.). Manuscripts may be submitted in the form of ditorials, original articles, review articles, special articles, letters to the Editor and guidelines. The journal aims to provide its readers with papers of the highest quality and impact through a process of careful peer review and editorial work.
期刊最新文献
Comparison of intra-operative skull fixation techniques on cervical sagittal parameters. Normal pressure hydrocephalus treatment: is it time to rethink? Roxadustat protects oxidative stress and tissue injury in the brain induced by ischemic stroke via the HIF-1α/NRF2 axis. Follow-up neuroimaging after non-perimesencephalic, angiogram-negative subarachnoid hemorrhage. Tuberculum sellae meningiomas: surgical outcomes in 65 patients, review of the literature and proposal for an anatomical and radiological classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1