Leonardo Tariciotti, Giorgio Fiore, Giorgio Carrabba, Giulio A Bertani, Luigi Schisano, Stefano Borsa, Emanuele Ferrante, Valerio M Caccavella, Pierpaolo Mattogno, Martina Giordano, Giulia Remoli, Giovanna Mantovani, Marco Locatelli
{"title":"一种监督式机器学习算法预测经蝶腔手术治疗垂体腺瘤术中脑脊液泄漏。","authors":"Leonardo Tariciotti, Giorgio Fiore, Giorgio Carrabba, Giulio A Bertani, Luigi Schisano, Stefano Borsa, Emanuele Ferrante, Valerio M Caccavella, Pierpaolo Mattogno, Martina Giordano, Giulia Remoli, Giovanna Mantovani, Marco Locatelli","doi":"10.23736/S0390-5616.21.05295-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.</p><p><strong>Methods: </strong>A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.</p><p><strong>Results: </strong>Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk's predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).</p><p><strong>Conclusions: </strong>The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs.</p>","PeriodicalId":16504,"journal":{"name":"Journal of neurosurgical sciences","volume":"67 4","pages":"393-407"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A supervised machine-learning algorithm predicts intraoperative CSF leak in endoscopic transsphenoidal surgery for pituitary adenomas.\",\"authors\":\"Leonardo Tariciotti, Giorgio Fiore, Giorgio Carrabba, Giulio A Bertani, Luigi Schisano, Stefano Borsa, Emanuele Ferrante, Valerio M Caccavella, Pierpaolo Mattogno, Martina Giordano, Giulia Remoli, Giovanna Mantovani, Marco Locatelli\",\"doi\":\"10.23736/S0390-5616.21.05295-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.</p><p><strong>Methods: </strong>A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.</p><p><strong>Results: </strong>Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk's predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).</p><p><strong>Conclusions: </strong>The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs.</p>\",\"PeriodicalId\":16504,\"journal\":{\"name\":\"Journal of neurosurgical sciences\",\"volume\":\"67 4\",\"pages\":\"393-407\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurosurgical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23736/S0390-5616.21.05295-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0390-5616.21.05295-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A supervised machine-learning algorithm predicts intraoperative CSF leak in endoscopic transsphenoidal surgery for pituitary adenomas.
Background: Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.
Methods: A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.
Results: Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk's predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).
Conclusions: The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs.
期刊介绍:
The Journal of Neurosurgical Sciences publishes scientific papers on neurosurgery and related subjects (electroencephalography, neurophysiology, neurochemistry, neuropathology, stereotaxy, neuroanatomy, neuroradiology, etc.). Manuscripts may be submitted in the form of ditorials, original articles, review articles, special articles, letters to the Editor and guidelines. The journal aims to provide its readers with papers of the highest quality and impact through a process of careful peer review and editorial work.