炼金术自由能计算的最佳实践[第v1.0条]。

Antonia S J S Mey, Bryce K Allen, Hannah E Bruce Macdonald, John D Chodera, David F Hahn, Maximilian Kuhn, Julien Michel, David L Mobley, Levi N Naden, Samarjeet Prasad, Andrea Rizzi, Jenke Scheen, Michael R Shirts, Gary Tresadern, Huafeng Xu
{"title":"炼金术自由能计算的最佳实践[第v1.0条]。","authors":"Antonia S J S Mey,&nbsp;Bryce K Allen,&nbsp;Hannah E Bruce Macdonald,&nbsp;John D Chodera,&nbsp;David F Hahn,&nbsp;Maximilian Kuhn,&nbsp;Julien Michel,&nbsp;David L Mobley,&nbsp;Levi N Naden,&nbsp;Samarjeet Prasad,&nbsp;Andrea Rizzi,&nbsp;Jenke Scheen,&nbsp;Michael R Shirts,&nbsp;Gary Tresadern,&nbsp;Huafeng Xu","doi":"10.33011/livecoms.2.1.18378","DOIUrl":null,"url":null,"abstract":"<p><p>Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of \"bridging\" potential energy functions representing <i>alchemical</i> intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.</p>","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388617/pdf/nihms-1717408.pdf","citationCount":"110","resultStr":"{\"title\":\"Best Practices for Alchemical Free Energy Calculations [Article v1.0].\",\"authors\":\"Antonia S J S Mey,&nbsp;Bryce K Allen,&nbsp;Hannah E Bruce Macdonald,&nbsp;John D Chodera,&nbsp;David F Hahn,&nbsp;Maximilian Kuhn,&nbsp;Julien Michel,&nbsp;David L Mobley,&nbsp;Levi N Naden,&nbsp;Samarjeet Prasad,&nbsp;Andrea Rizzi,&nbsp;Jenke Scheen,&nbsp;Michael R Shirts,&nbsp;Gary Tresadern,&nbsp;Huafeng Xu\",\"doi\":\"10.33011/livecoms.2.1.18378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of \\\"bridging\\\" potential energy functions representing <i>alchemical</i> intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.</p>\",\"PeriodicalId\":74084,\"journal\":{\"name\":\"Living journal of computational molecular science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388617/pdf/nihms-1717408.pdf\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living journal of computational molecular science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33011/livecoms.2.1.18378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living journal of computational molecular science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33011/livecoms.2.1.18378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

炼金术自由能计算是预测与分子从一种环境转移到另一种环境有关的自由能差的有用工具。这些方法的特点是使用“桥接”势能函数来表示炼金术的中间状态,这些状态不能作为真正的化学物质存在。从这些桥接炼金术热力学状态收集的数据允许有效地计算传递自由能(或传递自由能的差异),其模拟时间比直接模拟传递过程少几个数量级。虽然这些方法非常灵活,但必须注意避免常见的陷阱,以确保计算的自由能差对于所选的力场是可靠的和可重复的,并包括适当的修正,以便与实验数据进行直接比较。在本文中,我们回顾了目前几个流行的炼金术自由能计算应用领域的最佳实践,特别是对生物分子目标的相对和绝对小分子结合自由能计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Best Practices for Alchemical Free Energy Calculations [Article v1.0].

Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing alchemical intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling Software [Article v2.0]. Computing absolute binding affinities by Streamlined Alchemical Free Energy Perturbation [Article v1.0] Deep Learning for Molecules and Materials. Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0] A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1