Salman Khan, Anam Khalid, Ru Yang, Fatima Khalid, Muhammad Hamza Zahid, Haozhe Liu, Yunhua Zhang, Zaigui Wang
{"title":"添加枯草芽孢杆菌的日粮对肉鸡肠道微生物群和 TLRs 基因表达的影响","authors":"Salman Khan, Anam Khalid, Ru Yang, Fatima Khalid, Muhammad Hamza Zahid, Haozhe Liu, Yunhua Zhang, Zaigui Wang","doi":"10.1007/s12602-023-10144-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effects of dietary Bacillus subtilis supplementation on gut microbiota diversity, digestive enzyme activity, and Toll-like receptor (TLR) expression in broiler chickens. A total of 240 \"817\" crossbred broiler chickens were randomly assigned to four groups: control (basal diet, BD), group I (BD + 300 g/d B. subtilis at 1.08 × 107 CFU/kg), group II (BD + 600 g/d B. subtilis at 2.16 × 107 CFU/kg), and group III (BD + 900 g/d B. subtilis at 3.24 × 107 CFU/kg). Gut microbiota analysis revealed significant improvements in the abundance of specific microorganisms in the treatment groups, with distinct variations in the core microorganisms between the groups. Notably, protease activity in the ileum was significantly increased in groups II (22.59%; p < 0.01) and III (14.49%; p < 0.05) compared to that in the control group. Moreover, significant up-regulation of TLR1A and TLR7 expression was observed in jejunum and cecum of the treated groups. Additionally, the TLR1B expression in the ileum was significantly increased. Furthermore, TLR2A and MyD88 transcription levels were significantly elevated in the jejunum, liver, spleen, and kidneys of experimental groups. Modulations in the expression of various TLR's (TLR2B, TLR3, TLR4, TLR15, and TLR21) were also observed in different organs. The spleen and kidney of B. subtilis-supplemented chickens exhibited upregulated expression of the proinflammatory cytokine IL-1β. Dietary supplementation with B. subtilis in broiler chickens improved the gut microbiota diversity and significantly upregulated TLR's expression in various organs. B. subtilis could be a valuable feed additive, contributing to improved disease management and overall health in broiler chickens.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2251-2268"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Bacillus subtilis Supplemented Diet on Broiler's Intestinal Microbiota and TLRs Gene Expression.\",\"authors\":\"Salman Khan, Anam Khalid, Ru Yang, Fatima Khalid, Muhammad Hamza Zahid, Haozhe Liu, Yunhua Zhang, Zaigui Wang\",\"doi\":\"10.1007/s12602-023-10144-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effects of dietary Bacillus subtilis supplementation on gut microbiota diversity, digestive enzyme activity, and Toll-like receptor (TLR) expression in broiler chickens. A total of 240 \\\"817\\\" crossbred broiler chickens were randomly assigned to four groups: control (basal diet, BD), group I (BD + 300 g/d B. subtilis at 1.08 × 107 CFU/kg), group II (BD + 600 g/d B. subtilis at 2.16 × 107 CFU/kg), and group III (BD + 900 g/d B. subtilis at 3.24 × 107 CFU/kg). Gut microbiota analysis revealed significant improvements in the abundance of specific microorganisms in the treatment groups, with distinct variations in the core microorganisms between the groups. Notably, protease activity in the ileum was significantly increased in groups II (22.59%; p < 0.01) and III (14.49%; p < 0.05) compared to that in the control group. Moreover, significant up-regulation of TLR1A and TLR7 expression was observed in jejunum and cecum of the treated groups. Additionally, the TLR1B expression in the ileum was significantly increased. Furthermore, TLR2A and MyD88 transcription levels were significantly elevated in the jejunum, liver, spleen, and kidneys of experimental groups. Modulations in the expression of various TLR's (TLR2B, TLR3, TLR4, TLR15, and TLR21) were also observed in different organs. The spleen and kidney of B. subtilis-supplemented chickens exhibited upregulated expression of the proinflammatory cytokine IL-1β. Dietary supplementation with B. subtilis in broiler chickens improved the gut microbiota diversity and significantly upregulated TLR's expression in various organs. B. subtilis could be a valuable feed additive, contributing to improved disease management and overall health in broiler chickens.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"2251-2268\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-023-10144-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12602-023-10144-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effect of Bacillus subtilis Supplemented Diet on Broiler's Intestinal Microbiota and TLRs Gene Expression.
This study aimed to investigate the effects of dietary Bacillus subtilis supplementation on gut microbiota diversity, digestive enzyme activity, and Toll-like receptor (TLR) expression in broiler chickens. A total of 240 "817" crossbred broiler chickens were randomly assigned to four groups: control (basal diet, BD), group I (BD + 300 g/d B. subtilis at 1.08 × 107 CFU/kg), group II (BD + 600 g/d B. subtilis at 2.16 × 107 CFU/kg), and group III (BD + 900 g/d B. subtilis at 3.24 × 107 CFU/kg). Gut microbiota analysis revealed significant improvements in the abundance of specific microorganisms in the treatment groups, with distinct variations in the core microorganisms between the groups. Notably, protease activity in the ileum was significantly increased in groups II (22.59%; p < 0.01) and III (14.49%; p < 0.05) compared to that in the control group. Moreover, significant up-regulation of TLR1A and TLR7 expression was observed in jejunum and cecum of the treated groups. Additionally, the TLR1B expression in the ileum was significantly increased. Furthermore, TLR2A and MyD88 transcription levels were significantly elevated in the jejunum, liver, spleen, and kidneys of experimental groups. Modulations in the expression of various TLR's (TLR2B, TLR3, TLR4, TLR15, and TLR21) were also observed in different organs. The spleen and kidney of B. subtilis-supplemented chickens exhibited upregulated expression of the proinflammatory cytokine IL-1β. Dietary supplementation with B. subtilis in broiler chickens improved the gut microbiota diversity and significantly upregulated TLR's expression in various organs. B. subtilis could be a valuable feed additive, contributing to improved disease management and overall health in broiler chickens.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.