{"title":"circSNTB2 和 CUL4A 通过竞争性结合 miR-665 诱导核浆细胞功能障碍","authors":"Yiming Jia, Xin Huo, Leilei Wu, Haibo Zhang, Wenda Xu, Hui Leng","doi":"10.1007/s10528-023-10465-y","DOIUrl":null,"url":null,"abstract":"<div><p>Circular RNA (circRNA) plays important roles in lumbar degenerative diseases. This study aimed to investigate the role of circSNTB2 in regulating the development of lumbar disc herniation (LDH) in vitro and in vivo. The abnormally expressed circSNTB2 in intervertebral disc degeneration (IDD) through bioinformatics analysis was identified, and verified in nucleus pulposus (NP) tissues of patients with LDH. NP cells were treated with TNF-α to mimic the LDH microenvironment. RT-qPCR was applied to determine levels of mRNA and microRNA (miRNA) in clinical samples and cells. We performed CCK-8, EdU, TUNEL and flow cytometric apoptosis assays to evaluate the proliferation and apoptosis of NP cells. The predicted the miRNAs and downstream target genes were verified with the help of luciferase reporter gene and RNA pull-down experiments. Finally, we established an LDH rat model to further verify the role of circSNTB2 in vivo. circSNTB2 was significantly up-regulated in the NP tissues of LDH group and TNF-α -treated NP cells. miR-665 binds to circSNTB2 and cullin 4A (CUL4A) is the downstream target gene of miR-665. Knockdown of circSNTB2 promoted NP cells proliferation and inhibited apoptosis, which was reversed by down-regulation of miR-665. In addition, up-regulated CUL4A reversed the effects of over-expressed miR-665 on proliferation and apoptosis of NP cells. Meanwhile, results of in vivo experiments demonstrated that knocking down circSNTB2 alleviated LDH-induced thermo-mechanical pain and NP injury. In summary, circSNTB2 regulates the proliferation and apoptosis of NP by mediating miR-665 regulation of CUL4A, which provides a reliable idea for targeted therapy of LDH.</p><h3>Graphical Abstract</h3><p>Graphical abstract of how circSNTB2 promotes LDH progression. A schematic model of circSNTB2/miR-665/CUL4A signaling pathway in NP cells. CircSNTB2 competitively binds to miR-665, resulting in upregulation of CUL4A</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":"62 2","pages":"968 - 986"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"circSNTB2 and CUL4A Induces Dysfunction of Nucleus Pulposus Cells by Competitively Binding miR-665\",\"authors\":\"Yiming Jia, Xin Huo, Leilei Wu, Haibo Zhang, Wenda Xu, Hui Leng\",\"doi\":\"10.1007/s10528-023-10465-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Circular RNA (circRNA) plays important roles in lumbar degenerative diseases. This study aimed to investigate the role of circSNTB2 in regulating the development of lumbar disc herniation (LDH) in vitro and in vivo. The abnormally expressed circSNTB2 in intervertebral disc degeneration (IDD) through bioinformatics analysis was identified, and verified in nucleus pulposus (NP) tissues of patients with LDH. NP cells were treated with TNF-α to mimic the LDH microenvironment. RT-qPCR was applied to determine levels of mRNA and microRNA (miRNA) in clinical samples and cells. We performed CCK-8, EdU, TUNEL and flow cytometric apoptosis assays to evaluate the proliferation and apoptosis of NP cells. The predicted the miRNAs and downstream target genes were verified with the help of luciferase reporter gene and RNA pull-down experiments. Finally, we established an LDH rat model to further verify the role of circSNTB2 in vivo. circSNTB2 was significantly up-regulated in the NP tissues of LDH group and TNF-α -treated NP cells. miR-665 binds to circSNTB2 and cullin 4A (CUL4A) is the downstream target gene of miR-665. Knockdown of circSNTB2 promoted NP cells proliferation and inhibited apoptosis, which was reversed by down-regulation of miR-665. In addition, up-regulated CUL4A reversed the effects of over-expressed miR-665 on proliferation and apoptosis of NP cells. Meanwhile, results of in vivo experiments demonstrated that knocking down circSNTB2 alleviated LDH-induced thermo-mechanical pain and NP injury. In summary, circSNTB2 regulates the proliferation and apoptosis of NP by mediating miR-665 regulation of CUL4A, which provides a reliable idea for targeted therapy of LDH.</p><h3>Graphical Abstract</h3><p>Graphical abstract of how circSNTB2 promotes LDH progression. A schematic model of circSNTB2/miR-665/CUL4A signaling pathway in NP cells. CircSNTB2 competitively binds to miR-665, resulting in upregulation of CUL4A</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\"62 2\",\"pages\":\"968 - 986\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10528-023-10465-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10528-023-10465-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
circSNTB2 and CUL4A Induces Dysfunction of Nucleus Pulposus Cells by Competitively Binding miR-665
Circular RNA (circRNA) plays important roles in lumbar degenerative diseases. This study aimed to investigate the role of circSNTB2 in regulating the development of lumbar disc herniation (LDH) in vitro and in vivo. The abnormally expressed circSNTB2 in intervertebral disc degeneration (IDD) through bioinformatics analysis was identified, and verified in nucleus pulposus (NP) tissues of patients with LDH. NP cells were treated with TNF-α to mimic the LDH microenvironment. RT-qPCR was applied to determine levels of mRNA and microRNA (miRNA) in clinical samples and cells. We performed CCK-8, EdU, TUNEL and flow cytometric apoptosis assays to evaluate the proliferation and apoptosis of NP cells. The predicted the miRNAs and downstream target genes were verified with the help of luciferase reporter gene and RNA pull-down experiments. Finally, we established an LDH rat model to further verify the role of circSNTB2 in vivo. circSNTB2 was significantly up-regulated in the NP tissues of LDH group and TNF-α -treated NP cells. miR-665 binds to circSNTB2 and cullin 4A (CUL4A) is the downstream target gene of miR-665. Knockdown of circSNTB2 promoted NP cells proliferation and inhibited apoptosis, which was reversed by down-regulation of miR-665. In addition, up-regulated CUL4A reversed the effects of over-expressed miR-665 on proliferation and apoptosis of NP cells. Meanwhile, results of in vivo experiments demonstrated that knocking down circSNTB2 alleviated LDH-induced thermo-mechanical pain and NP injury. In summary, circSNTB2 regulates the proliferation and apoptosis of NP by mediating miR-665 regulation of CUL4A, which provides a reliable idea for targeted therapy of LDH.
Graphical Abstract
Graphical abstract of how circSNTB2 promotes LDH progression. A schematic model of circSNTB2/miR-665/CUL4A signaling pathway in NP cells. CircSNTB2 competitively binds to miR-665, resulting in upregulation of CUL4A
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.