Vanessa Sales-Oliveira, Marie Altmanová, Václav Gvoždík, Rafael Kretschmer, Tariq Ezaz, Thomas Liehr, Niklas Padutsch, Gabriel Badjedjea, Ricardo Utsunomia, Alongklod Tanomtong, Marcelo Cioffi
{"title":"跨物种染色体绘制和重复DNA图谱揭示了真鳄鱼(鳄科)的核型进化。","authors":"Vanessa Sales-Oliveira, Marie Altmanová, Václav Gvoždík, Rafael Kretschmer, Tariq Ezaz, Thomas Liehr, Niklas Padutsch, Gabriel Badjedjea, Ricardo Utsunomia, Alongklod Tanomtong, Marcelo Cioffi","doi":"10.1007/s00412-023-00806-6","DOIUrl":null,"url":null,"abstract":"<p><p>Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae).\",\"authors\":\"Vanessa Sales-Oliveira, Marie Altmanová, Václav Gvoždík, Rafael Kretschmer, Tariq Ezaz, Thomas Liehr, Niklas Padutsch, Gabriel Badjedjea, Ricardo Utsunomia, Alongklod Tanomtong, Marcelo Cioffi\",\"doi\":\"10.1007/s00412-023-00806-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.</p>\",\"PeriodicalId\":10248,\"journal\":{\"name\":\"Chromosoma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosoma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00412-023-00806-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosoma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00412-023-00806-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
鳄鱼的核型结构和二倍体染色体数目在大约一亿年的时间里一直非常相似,只是在共线性方面略有不同。目前还不清楚为什么这种核型结构在如此长的时间里基本保持不变。在这项研究中,我们分析了鳄鱼属(Crocodylus)和真鳄鱼属(Osteolaemus)的六个物种的核型,其中包括刚果特有的 O. osborni。我们利用各种技术(差异染色法、用重复 DNA 和 rDNA 探针进行荧光原位杂交、全染色体涂色和比较基因组杂交)来更好地了解鳄鱼染色体的进化过程。我们研究了鳄鱼四种主要二倍体染色体数目(2n = 30/32/38)中的三种。我们的数据为所研究的物种提供了新的信息,包括确定了鳄鱼核型多样化过程中发生的四次主要染色体重排。这些变化导致目前的二倍体染色体数目为 2n = 30(融合)和 2n = 38(裂片),源自 2n = 32 的祖先状态。鳄鱼的细胞遗传学趋势保持不变,现存物种保持着接近祖先的状态,这与其他主要爬行动物类群中更为动态的核型演化形成了鲜明对比。
Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae).
Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.
期刊介绍:
Chromosoma publishes research and review articles on the functional organization of the eukaryotic cell nucleus, with a particular emphasis on the structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis; the function and dynamics of subnuclear compartments; the nuclear envelope and nucleocytoplasmic interactions, and more.
The scope of Chromosoma encompasses genetic, biophysical, molecular and cell biological studies.
Average time from receipt of contributions to first decision: 22 days
Publishes research and review articles on the functional organization of the eukaryotic cell nucleus
Topics include structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis and more
Encompasses genetic, biophysical, molecular and cell biological studies.