使用网络搜索活动趋势预测流感的神经网络模型及其相关的不确定性。

IF 4.3 2区 生物学 PLoS Computational Biology Pub Date : 2023-08-28 eCollection Date: 2023-08-01 DOI:10.1371/journal.pcbi.1011392
Michael Morris, Peter Hayes, Ingemar J Cox, Vasileios Lampos
{"title":"使用网络搜索活动趋势预测流感的神经网络模型及其相关的不确定性。","authors":"Michael Morris,&nbsp;Peter Hayes,&nbsp;Ingemar J Cox,&nbsp;Vasileios Lampos","doi":"10.1371/journal.pcbi.1011392","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza affects millions of people every year. It causes a considerable amount of medical visits and hospitalisations as well as hundreds of thousands of deaths. Forecasting influenza prevalence with good accuracy can significantly help public health agencies to timely react to seasonal or novel strain epidemics. Although significant progress has been made, influenza forecasting remains a challenging modelling task. In this paper, we propose a methodological framework that improves over the state-of-the-art forecasting accuracy of influenza-like illness (ILI) rates in the United States. We achieve this by using Web search activity time series in conjunction with historical ILI rates as observations for training neural network (NN) architectures. The proposed models incorporate Bayesian layers to produce associated uncertainty intervals to their forecast estimates, positioning themselves as legitimate complementary solutions to more conventional approaches. The best performing NN, referred to as the iterative recurrent neural network (IRNN) architecture, reduces mean absolute error by 10.3% and improves skill by 17.1% on average in nowcasting and forecasting tasks across 4 consecutive flu seasons.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491400/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural network models for influenza forecasting with associated uncertainty using Web search activity trends.\",\"authors\":\"Michael Morris,&nbsp;Peter Hayes,&nbsp;Ingemar J Cox,&nbsp;Vasileios Lampos\",\"doi\":\"10.1371/journal.pcbi.1011392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza affects millions of people every year. It causes a considerable amount of medical visits and hospitalisations as well as hundreds of thousands of deaths. Forecasting influenza prevalence with good accuracy can significantly help public health agencies to timely react to seasonal or novel strain epidemics. Although significant progress has been made, influenza forecasting remains a challenging modelling task. In this paper, we propose a methodological framework that improves over the state-of-the-art forecasting accuracy of influenza-like illness (ILI) rates in the United States. We achieve this by using Web search activity time series in conjunction with historical ILI rates as observations for training neural network (NN) architectures. The proposed models incorporate Bayesian layers to produce associated uncertainty intervals to their forecast estimates, positioning themselves as legitimate complementary solutions to more conventional approaches. The best performing NN, referred to as the iterative recurrent neural network (IRNN) architecture, reduces mean absolute error by 10.3% and improves skill by 17.1% on average in nowcasting and forecasting tasks across 4 consecutive flu seasons.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491400/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011392\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011392","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流感每年影响数百万人。它导致大量的医疗就诊和住院,以及数十万人死亡。准确预测流感流行率可以极大地帮助公共卫生机构及时应对季节性或新型流行病。尽管已经取得了重大进展,但流感预测仍然是一项具有挑战性的建模任务。在本文中,我们提出了一个方法框架,该框架提高了美国流感样疾病(ILI)发病率的预测准确性。我们通过使用网络搜索活动时间序列和历史ILI率作为训练神经网络(NN)架构的观测值来实现这一点。所提出的模型结合了贝叶斯层,在其预测估计中产生相关的不确定性区间,将其定位为更传统方法的合法补充解决方案。性能最好的神经网络被称为迭代递归神经网络(IRNN)架构,在连续4个流感季节的实时预报和预测任务中,平均绝对误差降低了10.3%,技能平均提高了17.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network models for influenza forecasting with associated uncertainty using Web search activity trends.

Influenza affects millions of people every year. It causes a considerable amount of medical visits and hospitalisations as well as hundreds of thousands of deaths. Forecasting influenza prevalence with good accuracy can significantly help public health agencies to timely react to seasonal or novel strain epidemics. Although significant progress has been made, influenza forecasting remains a challenging modelling task. In this paper, we propose a methodological framework that improves over the state-of-the-art forecasting accuracy of influenza-like illness (ILI) rates in the United States. We achieve this by using Web search activity time series in conjunction with historical ILI rates as observations for training neural network (NN) architectures. The proposed models incorporate Bayesian layers to produce associated uncertainty intervals to their forecast estimates, positioning themselves as legitimate complementary solutions to more conventional approaches. The best performing NN, referred to as the iterative recurrent neural network (IRNN) architecture, reduces mean absolute error by 10.3% and improves skill by 17.1% on average in nowcasting and forecasting tasks across 4 consecutive flu seasons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model. Ten simple rules for teaching an introduction to R Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1